作业
NeHAO_WU
这个作者很懒,什么都没留下…
展开
-
【练习/sklearn库基础】使用分类决策树、回归决策树、分类随机森林、回归随机森林进行分类预测,条形图的形式显示评估结果
声明:1、 学生刚开始学习python,代码会有很多不严谨,也较为粗糙,单纯用于广大网友参考,希望能起到一定的帮助2、 如果要转载,请标记出来源3、本文纯粹用于技术练习,请勿用作非法途径4、如果有问题请在评论区指出,虚心接受立马改正做题途中所遇问题:无代码块:#2、 导入sklearn库自带的乳腺癌数据集(load_breast_cancer),# 使用分类决策树、回归决策树、分类随机森林、回归随机森林进行分类预测,# 并使用score()方法评估4种算法的性能,并以可视化图形(条形图)原创 2021-12-09 18:57:04 · 1153 阅读 · 0 评论 -
【练习/sklearn库基础】使用LinearRegssion、Lasso、Ridge进行回归预测,并计算各模型的评估结果,用条形图显示。
声明:1、 学生刚开始学习python,代码会有很多不严谨,也较为粗糙,单纯用于广大网友参考,希望能起到一定的帮助2、 如果要转载,请标记出来源3、本文纯粹用于技术练习,请勿用作非法途径4、如果有问题请在评论区指出,虚心接受立马改正做题途中所遇问题:1.在条形图上方标注各个评分值,忘了,搞了老半天搞出来代码块:#1、 导入sklearn库自带的乳腺癌数据集(。load_breast_cancer),使用LinearRegssion、Lasso、Ridge进行回归预测,并计算各模型的评估结果,原创 2021-12-09 18:55:20 · 935 阅读 · 0 评论 -
【练习/sklearn库基础】导入sklearn库自带的乳腺癌数据集,分别使用GaussianNB、MultinomialNb、BernouliNB、SVM及KNN5种分类器进行分类预测
声明:1、 学生刚开始学习python,代码会有很多不严谨,也较为粗糙,单纯用于广大网友参考,希望能起到一定的帮助2、 如果要转载,请标记出来源3、本文纯粹用于技术练习,请勿用作非法途径4、如果有问题请在评论区指出,虚心接受立马改正做题途中所遇问题:无代码块:在这里插入代码片#4、导入sklearn库自带的乳腺癌数据集,分别使用GaussianNB、MultinomialNb、BernouliNB、SVM及KNN5种分类器进行分类预测,并比较输出5种分类器预测的准确率优劣。#sklear原创 2021-12-05 20:56:11 · 6887 阅读 · 0 评论
分享