bzoj 2301 [HAOI2011]Problem b

题目链接:[HAOI2011]Problem b

题目大意:给你a,b,c,d,k五个数,问[a,b]这个区间里面的x和[c,d]这个区间里面的y有多少对gcd(x,y) == k

题目思路:我们先假定起点是1,区间为[1,b]和[1,d],最后做容斥就好,然后就按照以下思路:这个在[1,b]和[1,d]这个区间里有多少对gcd(x,y) == k可以转化为[1,b/k]和[1,d/k]这个区间里有多少对gcd(x,y) == 1,因为如果gcd(x,y)=1,则gcd(x∗k,y∗k)=k因为如果gcd(x,y)=1,则gcd(x∗k,y∗k)=k,这个很容易得证,所以我们转化为两个区间内gcd(x,y) == 1有多少对,那么我们可以构造两个函数F(t)代表gcd(x,y) == t的倍数有多少对(x,y),f(t)代表gcd(x,y) == t有多少对(x,y),然后可知F(n)=d|nf(d) 然后根据莫比乌斯第二条公式反演一下可知f(n)=d|nμ(nd)F(d) 然后我们知道的是要求f(1)为多少,所以n为1,并且F(n)=xnyn,x和y为两个区间的上限,这个很明显,然后我们就可以直接套用公式去反演这个f(1)啦,然后就是容斥了,本来算的是[a,b]这个区间和[c,d],但是我们算了[1,b]和[1,d],那么就多了一部分,就是[1,a]和[1,c]这两部分的多余运算,然后我们需要减去[1,a]与[1,d]和[1,c]和[1,b]这两部分,然后发现多减了一部分[1,a]和[1,c]然后再加上就好了

#include <map>
#include <set>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>

using namespace std;
typedef long long ll;
const int maxn = 5e5+10;

ll prime[maxn],mob[maxn],vis[maxn],sum[maxn],cnt;

void Mobius(){
    memset(prime,0,sizeof(prime));
    memset(mob,0,sizeof(mob));
    memset(vis,0,sizeof(vis));
    mob[1] = 1;
    cnt = 0;
    for(ll i = 2;i < maxn; i++){
        if(!vis[i]){
            prime[cnt++] = i;
            mob[i] = -1;
        }
        for(ll j = 0;j < cnt&&i*prime[j] < maxn;j++){
            vis[i*prime[j]] = 1;
            if(i%prime[j]) mob[i*prime[j]] = -mob[i];
            else{
                mob[i*prime[j]] = 0;
                break;
            }
        }
    }
    sum[0] = 0;
    for(ll i = 1;i < maxn;i++) sum[i] = sum[i-1]+mob[i];
}

ll cal(ll n,ll m){
    if(n > m) swap(n,m);
    ll ans = 0,j;
    for(ll i = 1;i <= n;i = j+1){
        j = min(n/(n/i),m/(m/i));
        ans += (sum[j]-sum[i-1])*(n/i)*(m/i);
    }
    return ans;
}

int main(){
    Mobius();
    ll T,a,b,c,d,k;
    scanf("%lld",&T);
    while(T--){
        scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
        a--,c--;
        a /= k,b /= k,c /= k,d /= k;
        printf("%lld\n",cal(b,d)-cal(a,d)-cal(b,c)+cal(a,c));
    }
    return 0;
}


发布了306 篇原创文章 · 获赞 24 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览