lcq0905
码龄9年
关注
提问 私信
  • 博客:12,649
    12,649
    总访问量
  • 12
    原创
  • 654,912
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2015-09-22
博客简介:

nephthes的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得4次评论
  • 获得2次收藏
创作历程
  • 1篇
    2020年
  • 10篇
    2017年
  • 1篇
    2015年
TA的专栏
  • Object Detection
    1篇
  • 学习笔记
    10篇
  • tensorflow
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

《Domain Adaptive Faster R-CNN for Object Detection in the Wild》论文笔记

《Domain Adaptive Faster R-CNN for Object Detection in the Wild》论文笔记
原创
发布博客 2020.11.21 ·
222 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

windows下安装tensorflow-gpu

请参照:https://nitishmutha.github.io/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html win7/win10系统都可以。
原创
发布博客 2017.08.22 ·
1067 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

《Close the Loop: Joint Blind Image Restoration and Recognition with Sparse Representation Prior》阅读笔记

1. 论文主要思想这是一篇关于模糊人脸图像识别的文章,作者将基于最大后验估计的去模糊模型以及稀疏表示分类模型紧密结合起来,同时实现了对模糊人脸图像的去模糊和识别。 对于模糊图像识别这一问题,最直观的解决方案就是:先利用图像复原技术从模糊图像中恢复出清晰图像,然后对清晰图像进行识别。但是这种直观的解决方案存在以下缺陷:①很多图像复原的方法的目的都是为了提升人眼对图像的感知,而不是提升机器(识别算法)
原创
发布博客 2017.08.12 ·
1424 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《numpy学习指南》学习笔记——常用函数

1. 文件的读写#生成一个单位矩阵,并将其保存到文件中 import numpy as np I2 = np.eye(2) np.savetxt('eye.txt',I2)
原创
发布博客 2017.08.12 ·
1170 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《Python基础教程》学习笔记——函数

1.创建函数使用def语句就可以实现函数的定义,python中函数也包括以下几个部分: 函数名(自定义,但是要符合命名规则,不能使用关键字) 形参列表(可以有0个或多个形参) 函数体 返回值(用return语句实现,也可以没有返回值(或者说返回None)) #定义一个名为hello的函数,并调用它 def hello(name): return 'Hello, '+name+'!'print
原创
发布博客 2017.08.10 ·
1072 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《numpy学习指南》学习笔记——数组

1.Numpy数组对象Numpy中的ndarray是一个多为数组对象,该对象由两部分组成: 实际的数据; 描述这些数据的元数据 大部分的数组操作仅仅修改元数据部分,而不修改底层的实际数据。 Numpy数组一般是同质的,即数组中的所有元素类型必须是一致的。这样有一个好处:如果我们知道数组中的元素均为同一类型,该数组所用的存储空间就很容易确定下来。与Python中一样,Numpy数组的下表也是从0开始
原创
发布博客 2017.08.09 ·
1455 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

《Python基础教程》学习笔记——序列

序列是Python中最基本的数据结构,序列中每个元素被分配一个序号——即元素的位置,也称索引,第一个索引是0,第二个索引是1,以此类推。 Python包括6中内建的序列:列表、元组、字符串、Unicode字符串、buffer对象和xrange对象。 下面介绍序列的基本通用操作:索引、切片、加、乘、成员资格、求最值和长度。----------索引示例----------根据给定的年月日以数字形式打印出
原创
发布博客 2017.08.09 ·
993 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《Python基础教程》学习笔记——字符串

序列的通用操作,加、乘、成员资格、最值、长度都适用于字符串----------字符串格式化----------用%来实现:在%的左侧放置一个格式化字符串,右侧放置希望格式化的值。 值可以是数字、字符串,也可以是元组或字典 如果使用列表或者其他序列代替元组,那么序列就会被解释为一个值 只有元组和字典可以格式化一个以上的值。formatStr = "Hello, %s. %s enough for
原创
发布博客 2017.08.09 ·
1083 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《Python基础教程》学习笔记——列表

列表:Python的“苦力” 列表是序列的一种,它是可变的。list函数可以将其他序列转换为列表list1 = list('hello') print list1 list2 = list((1,2,3)) print list2----------基本的列表操作----------1. 改变列表:元素赋值可以通过索引来为列表中的元素赋值,但注意不要越界x = [1,1,1] x[1] = 2 p
原创
发布博客 2017.08.09 ·
1057 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

《2006_ICPR_Low Resolution Character Recognition by Image Quality Evaluation》阅读笔记

论文主要思想这是一篇关于低质量字符图像识别的文章,这里的“低质量”指的是字符图像的分辨率低。 作者在文中指出,传统的(指的是2006年之前)低质量字符图像识别方法主要分为两类:第一类方法采用一些图像增强手段以及一些“先进的”二值化方法,来从低质量字符图像中提取出二值化图像,然后从二值化图像中提取出用来进行识别分类的特征,最后基于这些特征建立字符分类器;第二种方法则直接从低质量字符图像中提取分类特征
原创
发布博客 2017.08.06 ·
1045 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

《Python 基础教程》学习笔记——字典

字典:Python中唯一内建的映射类型-----------创建字典----------phonebook = {'Alice':'2341','Beth':'9102','Cecil':'3258'} print phonebook['Alice']可以用dict函数,通过其他映射(比如其他字典)或者(键,值)这样的序列对建立字典items = [('name','Gumby'),('age',4
原创
发布博客 2017.08.04 ·
1158 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

MATLAB代码转化成C+opencv时的注意事项

1.熟悉opencv2 Mat的一些常见语法 2.将Matlab中的.mat文件转化为.xml文件 3.注意matlab和opencv中矩阵的存放规则
原创
发布博客 2015.10.23 ·
903 阅读 ·
2 点赞 ·
1 评论 ·
3 收藏