摘要:
脑MRI图像在肿瘤诊断和分类中起着至关重要的作用。本文提出了一种基于MATLAB的多特征融合支持向量机(SVM)方法,用于脑MRI肿瘤分类。该方法通过结合多种特征,包括形态学特征、纹理特征和统计特征,提取出更全面、多样化的特征信息。然后,利用支持向量机分类器对提取的特征进行分类,以实现精确的肿瘤分类。实验结果表明,所提出的方法在脑MRI肿瘤分类任务中取得了较高的准确性和鲁棒性。
关键词:脑MRI;肿瘤分类;多特征融合;支持向量机;MATLAB
-
引言
脑MRI技术已成为肿瘤诊断和分类的重要手段之一。通过对脑MRI图像的分析和处理,可以提取出丰富的特征信息,用于肿瘤分类和定位。然而,脑MRI图像的复杂性和多样性给肿瘤分类任务带来了挑战。为了提高分类的准确性和鲁棒性,需要综合利用多种特征,并采用适当的分类算法。 -
方法
2.1 数据集
本研究使用了包含正常脑MRI图像和肿瘤脑MRI图像的数据集。数据集中的每个图像都经过预处理和标注,以便进行分类任务。
2.2 特征提取
本文采用了多种特征提取方法,包括形态学特征、纹理特征和统计特征。形态学特征包括图像的边缘、区域和形状信息。纹理特征通过分析图像的纹理模式,提取出纹理信息。统计特征则通过对图像的像素值进行统计分析,得到图像的统
本文提出了一种基于MATLAB的多特征融合支持向量机方法,结合形态学、纹理和统计特征,用于脑MRI肿瘤分类。实验显示,该方法提高了分类的准确性和鲁棒性。
订阅专栏 解锁全文
1866

被折叠的 条评论
为什么被折叠?



