背包_十年
码龄10年
关注
提问 私信
  • 博客:280,222
    社区:219
    问答:12,665
    293,106
    总访问量
  • 73
    原创
  • 1,626,984
    排名
  • 182
    粉丝
  • 0
    铁粉

个人简介:机器学习、计算机视觉、语音识别等方向学习。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2014-07-27
博客简介:

faiculty

博客描述:
欢迎大家移步到个人blog:https://faiculty.com/,每天更新机器学习算法实践,计算机视觉、NLP等方向的资讯等。
查看详细资料
个人成就
  • 获得147次点赞
  • 内容获得45次评论
  • 获得577次收藏
创作历程
  • 26篇
    2018年
  • 16篇
    2016年
  • 41篇
    2015年
成就勋章
TA的专栏
  • 计算机视觉
    13篇
  • 机器学习
    10篇
  • faicutly
    26篇
  • 机器学习
    15篇
  • ACM
    22篇
  • 编程语言
    4篇
  • CodingBI
    4篇
  • 本科小总结
    13篇
  • 语音识别
  • 人脸识别
    3篇
  • 图像处理
    2篇
  • python
    1篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvcaffemxnetpytorchnlp聚类集成学习迁移学习分类回归
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

用tf.data.dataset构建input pipline

用dataset构建input pipline这一部分主要参考tensorflow的官方教程:tf.data.datasets, 上一篇tensorflow数据读取是基于多线程数据抓取的方式,维护多队列(文件队列,example队列),是比较偏底层的。可能现在tensorflow开始慢慢走了上封装之路,datasets的出现隐藏了底层的实现。(还好不像python~~~~~~~~匿了)。因为本人是做
原创
发布博客 2018.03.17 ·
7473 阅读 ·
6 点赞 ·
4 评论 ·
21 收藏

[行为检测|论文解读]行为检测调研综述

计算机视觉 行为检测 视频理解1. 背景2. 国内外研究现状3. 行为分类3.1 研究难点3.2 数据集介绍3.3 传统方法3.3.1 密集采样特征点3.3.2 轨迹与轨迹描述子3.3.3 运动描述子3.4 TWO STREAM方法3.4.1 TWO-STREAM CNN3.4.2 TSN3.5 C3D方法3.6 RNN方法3.6.1 网络结构3....
原创
发布博客 2018.03.09 ·
25967 阅读 ·
53 点赞 ·
6 评论 ·
277 收藏

[行为识别] 2018 AAAI 行为识别论文解读

[行为识别] 2018 AAAI 行为识别论文解读Action Detection[1] ++Action Recognition from Skeleton Data via Analogical Generalization over Qualitative Rep
原创
发布博客 2018.03.08 ·
16045 阅读 ·
9 点赞 ·
1 评论 ·
73 收藏

[聚类一]之距离计算

距离计算我们通常采用计算“距离”的方法来度量不同样本之间的相似性,进而判断该样本的大致类别。距离首先是一个几何概念,用dist(⋅,⋅)dist(⋅,⋅)\mathrm{dist}(\cdot,\cdot)表示,其中最为任熟悉的是二维和三维几何空间的欧几里德距离,随着数据维度的增大,距离在维数、幂次数等方面被推广了,距离被抽象为满足一些基本性质: 非负性:dist(xi,xj)≥0;(...
原创
发布博客 2018.03.05 ·
7440 阅读 ·
2 点赞 ·
3 评论 ·
22 收藏

conda-多环境配置

anaconda 能带你去任何地方,今天带大家一起窥一窥conda的多环境配置。1. anaconda概述Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environme...
转载
发布博客 2018.03.05 ·
15616 阅读 ·
4 点赞 ·
0 评论 ·
14 收藏

[贝叶斯九]之EM算法

一、简单介绍EM(Expectaion Maximization)算法(又称为期望最大化方法)是一种迭代算法,Dempster等人在1977年总结提出来的。简单来说EM算法就是一种含有隐变量的概率模型参数的极大似然估计。EM算法的每次迭代由两步组成:第一是求期望,第二是求极大。EM算法在机器学习中有极为广泛的应用。如常被用来学习高斯混合模型(Gaussian mixture model, 简称...
原创
发布博客 2018.02.27 ·
1265 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

[机器学习一]之贝叶斯系列

第1章 贝叶斯定理1.1 基本概念1.2 全概率公式1.3 贝叶斯公式1.4 参考文献第2章 贝叶斯决策理论2.1 贝叶斯决策理论2.2 贝叶斯分类规则2.2.1 决策错误概率(probability of decision error)2.2.2 平均风险最小(minimizing the average risk)第3章 决策函数与决策面3.1 决策面...
原创
发布博客 2018.02.14 ·
3286 阅读 ·
6 点赞 ·
0 评论 ·
18 收藏

[贝叶斯八]之极大似然估计

一、简单介绍极大似然估计是根据观察数据来估计模型参数的方法,即“模型已定,模型未知”。它是参数估计的一种方法,请参考《概率论与数理统计(浙大第四版)》中参数估计。 举个例子,大家都知道抛硬币的实验: 假设有一枚不规则的硬币,要计算它正面朝上的概率。其实就是估计一个二分布的参数。现在我们开始做实验,抛了10次,得到相应的结果。那么如何根据这些结果来估计我们的参数呢?这就是极大似然估计要处理...
原创
发布博客 2018.02.08 ·
315 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[贝叶斯七]之正态分布贝叶斯决策

贝叶斯是非常传统,理论简单,但是非常有效的一种机器学习方法。经过大量实验表明,贝叶斯方法是极具鲁棒性的。至今为止仍然有很多人在研究贝叶斯的基础理论,而且发现许多算法都可以由贝叶斯推导而来,所以贝叶斯是具有极大的研究价值的理论。 这一章节我们就来扯一扯正态分布数据的贝叶斯决策理论,看看我们能搞点什么事情出来。自己多多推导,没准能发现新的大陆。许多优秀的算法,比如SVM等等往往就是这样诞生的。...
原创
发布博客 2018.02.08 ·
10422 阅读 ·
7 点赞 ·
1 评论 ·
58 收藏

[贝叶斯六]之朴素贝叶斯分类器设计

同样,类似于[贝叶斯四]之贝叶斯分类器设计,我们用一个例子:字母分类,来阐述朴素贝叶斯分类器的设计。老套路,搞个三部曲:特征向量生成决策函数设计模型训练在做问题分析之前,请先做数据集的分析。一、数据集分析数据集来自于UCI: UCI字母分类数据集链接这个数据集原始数据一共包含20000张图像(一般取前16000张图像作为训练,后4000张图像作为测试),每张图像经过...
原创
发布博客 2018.02.07 ·
1055 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

[贝叶斯五]之朴素贝叶斯

一、前因这一章节依然是基础知识,贝叶斯分类器的核心就是要计算出后验概率p(wi|x)p(wi|x)p(w_i|x),依据贝叶斯定理 p(wi|x)=p(x|wi)p(wi)p(x)p(wi|x)=p(x|wi)p(wi)p(x)p(w_i|x) = \frac {p(x|w_i)p(w_i)}{p(x)}其中: p(wi)p(wi)p(w_i)是类别iii出现的概率,这个比较好求...
原创
发布博客 2018.02.07 ·
322 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[贝叶斯三]之决策函数和决策面

一、决策面(Decision Surfaces)1.1 概念如果输入的数据是一个LLL维空间特征,考虑一个MMM分类问题,那么分类器将会把这个LLL维空间的特征点分为MMM个区域。每个区域显然就属于一个类别,如果输入一个点xxx落在第iii个区域,那么xxx就属于第iii类。分割成这些区域的边界就称为决策面。1.2 例子下面是一个简答的例子:输入是一维,决策函数是p...
原创
发布博客 2018.02.07 ·
9390 阅读 ·
6 点赞 ·
0 评论 ·
22 收藏

[贝叶斯一]之贝叶斯理论

一、基本概念贝叶斯理论是机器学习中一个核心方法,它由英国数学家托马斯贝叶斯在1763年发表的一篇论文中首先提出这个定理。贝叶斯定理是用来度量不确定性事件的,比如今天下雨概率,是一种概率模型。在介绍贝叶斯理论之前我们先看看统计模式识别(statistical pattern recognition)中的一些概率知识。假设有一组随机数据X=[x1,x2,x3,......xl]T∈RlX=[x...
原创
发布博客 2018.02.07 ·
1238 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

[贝叶斯四]之贝叶斯分类器设计

这一小节我们将简单的阐述一般贝叶斯分类器设计的方法。分类器流程如下所示。输入:d-dim 特征向量计算决策函数值(针对每个类别)选取最大的值做出决策输出结果如下图可以清楚的表达整个分类器工作的流程。借用《算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)》的一张图来表示整个设计的流程。下面我们将以两个小例子来贯穿...
原创
发布博客 2018.02.06 ·
2205 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

[贝叶斯二]之贝叶斯决策

生活中的许多决策都是不确定性的,比如明天是否下雨,我需要带伞么?这个时候就需要我们做出决策,如果认为明天会下雨,显然我们就会带上伞,否则不然。那么这个时候我们怎么判断我们的决策是否可信?又是否是最佳的决策呢?这个时候往往就需要引入评价准则(evaluation criteria)。不同的评价准则在相同的决策机制中往往会导致不同的决策结果。贝叶斯决策常用的评价准则一般如下。最小错误概率(T...
原创
发布博客 2018.02.04 ·
954 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

[目标检测|SSD实践一]caffe-ssd基线

本次实验利用caffe-ssd跑出了基线,主要从以下几个方向总结。 - caffe-ssd的编译 - caffe-ssd demo演示 - 自建数据集的数据准备 - fineTuning - 测试分析一、caffe基线实验源码地址在github:https://github.com/weiliu89/caffe/tree/ssd1.1 CPU版安装/...
原创
发布博客 2018.02.04 ·
1917 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

[行为检测]R-C3D-Resgion Convolutional 3D Network for Temporal Activity Detection

这篇文章是ICCV 2017的一篇文章,作者主要是以C3D网络为基础。借鉴了Faster RCNN的思路,对于任意的输入视频L,先进行proposal,然后3D-pooling,最后后进行分类和回归操作。文章主要贡献点有3个:可以针对任意长度视频、任意长度行为进行端到端的检测速度很快(是目前网络的5倍),通过共享Progposal generation 和Classification网络的...
原创
发布博客 2018.01.26 ·
10163 阅读 ·
5 点赞 ·
6 评论 ·
42 收藏

[行为识别]RPAN:An end-to-end recurrent pose-attention network for action recognition

这篇文章是来自中科院深圳先进院乔宇老师,ICCV2017年的oral文章《RPAN:An End-to-End Recurrent Pose-Attention Network for Action Recognition in Videos》。这篇文章的出发点是当前行为识别的一大流行方向:RNN。与之前的video-level category 训练RNN不相同。这篇文章提出了引入pose-at...
原创
发布博客 2018.01.25 ·
3912 阅读 ·
0 点赞 ·
2 评论 ·
10 收藏

[干货|实践] Tensorflow学习 - 使用flags定义命令行参数

学习目的:深度学习神经网络往往有过多的Hyperparameter需要调优,优化算法、学习率、卷积核尺寸等很多参数都需要不断调整,使用命令行参数是非常方便的。有两种实现方式,一是利用python的argparse包,二是调用tensorflow自带的app.flags实现。利用tf.app.flags组件tf定义了tf.app.flags,用于接受命令行传递参数,相当于接受argv。首先调...
原创
发布博客 2018.01.23 ·
1497 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

[行为检测] CDC-Convolutional-De-Convolutional Networks for Precise Temporal Action Location

这篇文章是2017年ICCV的一篇文章《Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos》,下面是这篇文章的主要贡献点。第一次将卷积、反卷积操作应用到行为检测领域,文章同时在空间下采样,在时间域上上采样。利用CDC网络结果可以做到端到端的学...
原创
发布博客 2018.01.23 ·
2712 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏
加载更多