神经网络系列——(零)前期环境搭建

实验室近来希望做一些与深度学习结合的相关研究。在无任何基础背景的情况下,希望通过自身学习和技术交流的方式,来逐步提高对知识的理解和运用。

博客参考了大量学习资料和网络资源,在此感谢各位前辈们的分享交流。

神经网络环境采用Ubuntu16.04+Python2.7+Tensorflow1.3进行搭建。

1. 在Windows平台上安装VMware软件,具体安装下载不进行介绍了,网上可以很方便找到激活密钥。

2. 在VMware中分配内存、处理器、磁盘等,创建Ubuntu的虚拟机,根据安装引导,一步步操作,完成Ubuntu16.04的安装。安装完毕后,在VMware虚拟机这一菜单栏中选择安装VMware Tools,可使虚拟系统自适应于客户机的屏幕大小。

3. Ubuntu自带了Python环境,但缺少了pip这款Python包管理工具,在终端中使用命令"sudo apt install python-pip"安装pip工具。

4. 在清华大学开源镜像站https://mirrors.tuna.tsinghua.edu.cn/中,查找Tenorflow的各种版本,选择适合自己软硬件平台的版本,这里使用的是tensorflow-1.3.0-cp27-none-linux_x86_64.whl。下载该版本,并存放至Ubuntu系统的合适位置。在该位置上,使用命令"pip install tensorflow-1.3.0-cp27-none-linux_x86_64.whl"安装Tensorflow。

5. 修改Vim参数,使之更利于我们编写程序代码,若没有安装Vim,使用命令"sudo apt install vim"安装Vim编辑器。输入命令"vim ~/.vimrc",在编辑器中输入

set ts=4
set nu

并保存退出,使Vim编辑器Tab键表示4个空格,同时显示代码行号。

6. 运行神经网络代码时,若没有使用电脑所支持的加速指令时会产生Warnings。我们可以把这些Warnings暂时屏蔽掉,进入主目录下的bashrc文件,可以使用命令"vim ~/.bashrc",在文件末尾插入

export TF_CPP_MIN_LOG_LEVEL=2

使Tensorflow的提示等级降低,输入"source ~/.bashrc"命令使刚进行的配置文件生效。

阅读更多
想对作者说点什么? 我来说一句

零死角玩转STM32—F429

2016年06月17日 31.66MB 下载

没有更多推荐了,返回首页

不良信息举报

神经网络系列——(零)前期环境搭建

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭