NC 26257 Dijkstra

题意

传送门 NC 26257

题解

对于地铁线,每两站之间拆成一条边;对于每个节点,抵达此节点的上一条地铁线共有 mm 种可能,则每个节点共有 mm 种状态。DijkstraDijkstra 记录抵达节点的上一条地铁线的 idid,求每个节点每种状态的最短路。要特别处理起点,可将其 idid 设为非 mm 条地铁线的任一 idid,且考虑起点与终点相等的情况。

此题也可以通过分层图 + dijkstradijkstra 求解,即每一层为一条地铁线,为每条地铁线的相同地铁站引入一个虚节点进行连接,此时可以直接跑 DijkstraDijkstra

#include <bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define maxm 505
#define maxv 1005
struct edge
{
    int to, id;
};
struct node
{
    int d, v, id;
    bool operator<(const node &nd) const
    {
        return d > nd.d;
    }
};
int n, m, s, t, a[maxv], b[maxv], c[maxv];
int used[maxv][maxm], d[maxv][maxm];
vector<edge> G[maxv];

int dijkstra()
{
    priority_queue<node> q;
    memset(d, 0x3f, sizeof(d));
    memset(used, 0, sizeof(used));
    d[s][m] = 0;
    q.push(node{0, s, m});
    while (!q.empty())
    {
        node p = q.top();
        q.pop();
        int v = p.v, id = p.id;
        if (used[v][id])
            continue;
        for (int i = 0; i < G[v].size(); i++)
        {
            edge &e = G[v][i];
            int d2 = d[v][id] + b[e.id] + (id == e.id ? 0 : a[e.id]);
            if (d2 < d[e.to][e.id])
            {
                d[e.to][e.id] = d2;
                q.push(node{d[e.to][e.id], e.to, e.id});
            }
        }
    }
    return *min_element(d[t], d[t] + m + 1);
}

int main()
{
    scanf("%d%d%d%d", &n, &m, &s, &t);
    for (int i = 0; i < m; i++)
    {
        int k, pre = -1;
        scanf("%d%d%d", a + i, b + i, c + i);
        for (int j = 0; j < c[i]; j++)
        {
            scanf("%d", &k);
            if (pre != -1)
            {
                G[pre].push_back(edge{k, i});
                G[k].push_back(edge{pre, i});
            }
            pre = k;
        }
    }
    int res = dijkstra();
    printf("%d\n", res == inf ? -1 : res);
    return 0;
}
展开阅读全文
©️2020 CSDN 皮肤主题: 1024 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值