机器学习如何处理数据中的缺失值

标签: 机器学习 大数据
9人阅读 评论(0) 收藏 举报
分类:

处理数据缺失值的常见做法:

  1. 使用可用特征的均值来填补缺失值
  2. 使用特殊值来填补缺失值,如-1
  3. 忽略有缺失值的样本
  4. 使用相似样本的均值填补缺失值
  5. 使用机器学习算法预测缺失值
查看评论

机器学习缺失值处理方法汇总

缺失值处理方法综述缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。 机...
  • w352986331qq
  • w352986331qq
  • 2017-11-26 19:44:48
  • 1222

机器学习预处理之数据值缺失

一、缺失值产生的原因 缺失值的产生的原因多种多样,主要分为机械原因和人为原因。机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间...
  • chienchia
  • chienchia
  • 2014-11-05 09:22:15
  • 3169

机器学习基础(三十六)—— 非规整数据(值缺失、异常值)的处理

(1)非规整 (2)值缺失 (3)异常值(outlier) 一般来说,现实中的数据会存在信息不完整、数据点缺失和异常值的情况,理想情况下,我们会去尝试修复非规整数据,但很多数据集都源于一些难以重现(不...
  • lanchunhui
  • lanchunhui
  • 2016-03-31 21:53:06
  • 2154

数据的预处理之缺失值处理

在训练一个模型之前需要做数据的预处理,因为模型的最终效果决定于数据的质量和数据中蕴含的有用信息的数量。在实际的模型的训练样本数据中,样本可能会由于某些原因,造成一个或多个值的缺失。可能由于样本采集过程...
  • sinat_29957455
  • sinat_29957455
  • 2018-03-04 22:18:26
  • 167

机器学习如何应对数据量不足的情况

首选,尝试一下常用的线性分类器,比如SVM、LR这些,看训练误差和测试误差的差异,这个时候可能出现多种情况:如果训练误差远小于测试误差,说明分类器已经过拟合了,考虑如何避免过拟合。如果训练误差和测试误...
  • baidu_33289052
  • baidu_33289052
  • 2018-03-26 10:12:53
  • 73

机器学习实战-数据探索(缺失值处理)

2017.09.10 09:06* 字数 1753 阅读 315评论 1喜欢 4 接着上一篇:《机器学习实战-数据探索》介绍,机器学习更多内容可以关注github项目:machine...
  • javastart
  • javastart
  • 2017-09-11 19:53:35
  • 734

机器学习(一):用sklearn进行数据预处理:缺失值处理、数据标准化、归一化

在我们平时进行数据数据挖掘建模时,一般首先得对数据进行预处理,其中就包括数据缺失值、异常值处理、数据的标准化、归一化等等。 下面主要介绍如何对一个数据文件进行数据的缺失值处理、标准化和归一化 ...
  • destiny_python
  • destiny_python
  • 2017-11-28 16:02:44
  • 814

缺失值处理方法

本文参考了多篇CSDN、知乎以及百度的文章,如果侵犯了您的权益,请及时联系,这是自己写的第一篇博客,有很多不足之处,请原谅。 文章将常见的自己能理解的一些缺失值的处理方法以及方法的优缺点做了简单介绍...
  • s2638358892
  • s2638358892
  • 2017-08-24 13:38:44
  • 1824

机器学习实战-数据探索(缺失值处理)

为什么需要处理缺失值呢? 训练数据集中缺少的数据可以减少模型的拟合,或者可能导致模型偏差,因为没有正确地分析变量的行为和关系,可能导致错误的预测或分类。 Data_Exploration_...
  • kwame211
  • kwame211
  • 2017-09-25 09:48:06
  • 382

【方法】机器学习中的数据清洗与特征处理

来源:http://tech.meituan.com/machinelearning-data-feature-process.html 背景 随着美团交易规模的逐步增大,积累下来的业务数据和交易...
  • dengxing1234
  • dengxing1234
  • 2017-03-16 19:18:01
  • 23561
    个人资料
    持之以恒
    等级:
    访问量: 5万+
    积分: 1384
    排名: 3万+
    最新评论