机器学习如何处理数据中的缺失值

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/newmemory/article/details/79976347

处理数据缺失值的常见做法:

  1. 使用可用特征的均值来填补缺失值
  2. 使用特殊值来填补缺失值,如-1
  3. 忽略有缺失值的样本
  4. 使用相似样本的均值填补缺失值
  5. 使用机器学习算法预测缺失值

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试