Simon IELTS: Listening

文章目录


Key Tips

  1. Know the test
    • Do some real practice tests.
  2. Use the break to read ahead (only check back at the end)
    • before each sections starts
    • in the middle of each section (except in section 4)
    • at the end of each section
    • When you get those breaks, that’s your reading time to prepare the questions that are coming next.
    • Don’t look back, don’t check what you’ve just done. That’s a waste of time, always read ahead.
  3. Underline the keywords
  4. Listen for keywords or synonyms

    The answer might not be the exact words that you see in the question, that you hear in the recording.

  5. Be caref
【基于DQN和PyTorch无人机】【多智能体深度Q学习(MA-DQL)】分布式用户连接最大化在基于无人机的通信网络中研究(Python代码实现)内容概要:本文围绕基于DQN和PyTorch的多智能体深度Q学习(MA-DQL)在无人机通信网络中的应用展开研究,重点解决分布式用户连接最大化问题。通过构建多智能体强化学习模型,利用PyTorch框架实现算法训练与仿真,优化无人机作为空中基站时的用户接入策略,提升通信网络的覆盖效率与资源利用率。文中详细介绍了MA-DQL的网络架构设计、状态-动作空间定义、奖励机制构建及分布式协作机制,并结合Python代码实现验证了方法的有效性与优越性。; 适合人群:具备一定深度学习和强化学习基础,熟悉PyTorch框架,从事无线通信、无人机网络或智能优化方向研究的研究生及科研人员。; 使用场景及目标:①应用于无人机辅助的无线通信网络中,实现用户连接的智能调度与资源优化;②为多智能体强化学习在分布式决策问题中的落地提供实践参考;③支持科研复现与算法改进,推动智能通信网络的发展。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解MA-DQL在实际通信场景中的建模过程,重点关注多智能体间的协同机制与奖励函数设计,同时可扩展至更复杂的动态环境与大规模网络场景中进行验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值