排序:
默认
按更新时间
按访问量

聚类算法

分类和聚类 聚类:把相似的东西分成一组。 常用算法 K-means算法 首先需要制定K值,即簇的个数,也即分成的堆数。 质心,也即数据的均值,指向量各维求平均即可。 距离的度量,常用欧几里得距离和余弦相似度计算。 优化目标: 优点 简单、快速、适合常规数据 缺点 K值比较...

2018-11-04 09:47:54

阅读数:73

评论数:0

集成算法

集成算法 目的:让机器学习效果更好 Bagging模型 各个弱学习器之间没有依赖关系,可以并行拟合,如随机森林。 随机森林其中随机就是数据采用随机,特征选择随机,其中森林就是很多决策树并行放在一起。由于二重随机性,使得每个树基本上都不会相同,所以最终的结果也不同。   Boosting...

2018-11-02 14:26:30

阅读数:6

评论数:0

支持向量机

支持向量机 1.超平面公式 n 维空间中的超平面由下面的方程确定: 其中,w 和 x 都是 n 维列向量,x 为平面上的点,w 为平面上的法向量,决定了超平面的方向,b 是一个实数,代表超平面到原点的距离。且         2.距离公式 如果在二维空间中有直线Ax+By+C=0,...

2018-10-30 19:10:52

阅读数:30

评论数:0

贝叶斯分类算法

贝叶斯公式 公式描述: 公式中,事件Bi的概率为P(Bi),事件Bi已发生条件下事件A的概率为P(A│Bi),事件A发生条件下事件Bi的概率为P(Bi│A)。 朴素贝叶斯算法 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。是一种贝叶斯分类算法中最简单、最常用的一种分类算法。...

2018-10-07 18:48:13

阅读数:17

评论数:0

决策树算法

决策树算法 决策树本质上是通过一系列规则对数据进行分类的过程。如何构造精度高、规模小的决策树是决策树算法的核心内容。 决策树学习通常包括3个步骤: 特征选择、决策树的生成和决策树的修剪。 特征选择:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点,以...

2018-09-29 22:55:46

阅读数:19

评论数:0

机器学习中欠拟合和过拟合/上采样和下采样

过拟合和欠拟合 机器学习模型在训练数据集上表现出的误差叫做训练误差,在任意一个测试数据样本上表现出的误差的期望值叫做泛化误差。  欠拟合under-fitting:机器学习模型无法得到较低训练误差。 过拟合over-fitting:机器学习模型的训练误差远小于其在测试数据集上的误差。 但是...

2018-09-27 21:28:05

阅读数:156

评论数:0

机器学习中模型评估方法

交叉验证 什么是交叉验证(CV) 交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(mode...

2018-09-24 21:54:29

阅读数:22

评论数:0

机器学习项目实战 交易数据异常检测

https://blog.csdn.net/u010057965/article/details/80614278

2018-09-24 18:24:39

阅读数:75

评论数:0

K-近邻算法(KNN)

K-近邻算法介绍 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K-近邻算法是一种分类算法。 K-近邻算法步骤 k-近邻算法步骤如下: 计算已知类别数据集中的点与当前点之间的距离; 按照距离递增次序排序; 选取与当前点...

2018-09-18 13:47:33

阅读数:15

评论数:0

逻辑回归算法

逻辑回归介绍 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。 如给的一封邮件,判断是不是垃圾邮件。逻辑回归一般是提供样本和已知模型求回归参数。   逻辑回归算法模型以及模...

2018-09-16 15:43:43

阅读数:28

评论数:0

线性回归算法

线性回归 什么是线性回归 如果我们能够建立了回归背后的数学模型,我们便可以根据输入变量来预测输出量。这个数学模型就是回归方程,里面的系数就是回归系数。求解这些回归系数的过程就是回归。 一元线性回归 一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设...

2018-09-09 22:08:38

阅读数:70

评论数:0

常见的概率公式总结

1.古典概率 般说来,如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为: P(A)=a/(a+b) 例子: 同时掷两枚硬币,可能出现正正、反反、正反、反正四种可能的结果,每种可能出现概率1/4 2.条件概率公式 描述: 公...

2018-09-08 23:58:46

阅读数:108

评论数:0

数据分析时None和NaN区别

None vs NaN区别在pandas中, 如果其他的数据都是数值类型, pandas会把None自动替换成NaN, 甚至能将s[s.isnull()]= None,和s.replace(NaN, None)操作的效果无效化。 这时需要用where函数才能进行替换。None能够直接被导入数据库作...

2018-07-14 12:12:11

阅读数:179

评论数:0

利用IDA对dex文件进行动态调试过程

1.调试的过程。 2.查看和跟踪流程内存值. 3.遇到的问题(类型转换的问题) 3.修改某个寄存器的值

2017-04-07 22:07:42

阅读数:510

评论数:0

Android逆向中的常用调试方法和使用代码总结

0x01 smail语言的调式方法 a.动态分析法,利用log日志输入或者toast输出。 利用Toast进行调试 java代码 Toast.makeText(this, "Toast text", 1).show(); smail代码 const-string v0, ...

2017-01-11 23:03:57

阅读数:1142

评论数:0

ARM汇编中的常用指令总结

数据传送指令 mov指令 mov {cond}{s} , Rd目标寄存器,operand 常数/可用寄存器 例子 mov   r0, #10      // r0 = 10;对应C语言形式           mov  r0,   r1        // r0 = r1  MVN指令 按位取...

2016-12-24 23:41:01

阅读数:303

评论数:0

HTTPS证书生成原理和部署细节

今天摸索了下 HTTPS 的证书生成,以及它在 Nginx 上的部署。由于博客托管在 github 上,没办法部署证书,先记录下,后续有需要方便快捷操作。本文的阐述不一定完善,但是可以让一个初学者了解大致的原理,同时跟着操作可以为自己的博客/网站部署一个 HTTPS 证书。 网站...

2016-12-20 14:14:13

阅读数:313

评论数:0

OpenSSL 的使用详解

OpenSSL 是一个开源项目,其组成主要包括一下三个组件: openssl:多用途的命令行工具 libcrypto:加密算法库 libssl:加密模块应用库,实现了ssl及tls openssl可以实现:秘钥证书管理、对称加密和非对称加密 。 1...

2016-12-19 09:59:38

阅读数:8172

评论数:0

Android移动安全中的安全风险点总结对比

0x01 四大组件安全 对四大组件进行对比,私有组件是采取的措施,均为设置exported属性为False,公有组件设置权限和更加详细的权限控制。 0x02 WebView组件安全 详细介绍了WebView中常见的风险类型,并根据风险类型触发漏洞的原因不同,采取相应的...

2016-12-15 23:11:44

阅读数:370

评论数:0

WEB漏洞测试payload整理

常用web漏洞测试的payload整理,把写的一个类sqlmap的web安全漏洞测试工具的Payload整理下来,供大家测试时参考。 [反射型xss] [在html形成] "'>document.title="[random]"; document.title=...

2016-12-14 17:51:10

阅读数:4025

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭