最短路径

Floyd算法

算法思想

从i点到j点,如果从i点到k点,再从k点到j点的路径小于直接从i到j,则更新i到j的最短路径。

代码

题目

题目描述:
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
输入:
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。输入保证至少存在1条商店到赛场的路线。
当输入为两个0时,输入结束。
输出:
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间。
样例输入:
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
样例输出:
3
2
#include <iostream>
#include <cstring>
using namespace std;

int main()
{
    int N,M,a[101][101];
    while(cin>>N>>M&&N){
        //初始化,自己节点到自己节点的距离为0
        memset(a,0,sizeof(a));
        for(int i=0;i<M;i++){
            int A,B,C;
            cin>>A>>B>>C;
            a[A][B]=a[B][A]=C; //无向图需要两边都赋值
        }
        for(int k=1;k<=N;k++){
            for(int i=1;i<=N;i++){
                for(int j=1;j<=N;j++){
                    if(k==i||k==j||a[i][k]==0||a[k][j]==0)
                        continue;
                    //路径不存在也需要更新
                    if(a[i][k]+a[k][j]<a[i][j]||a[i][j]==0){
                        a[i][j]=a[i][k]+a[k][j];
                    }
                }
            }
        }
        cout<<a[1][N]<<endl;
    }
    return 0;

}

单源最短路径Dijkstra

算法步骤

假设计算1号节点到达其他节点的最短路径
1.在集合K中,加入节点1,节点1到节点1的最短距离为0,到其他点为无穷大。
2.遍历与集合K直接相邻的边(U,V,C),U属于集合K的节点,V不属于集合K的节点,,计算由1号节点到达U的最短路径长度,再加上由U到达V的路径长度。比较所有与集合K相连的非集合节点K的路径长度。其中路径最小的节点,被确定为下一个最短路径确定的节点。加入集合K。
3.如果集合K已经包括了所有的节点,程序结束。否则重复步骤2.

代码

问题同上

#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
//构造边的结构体
struct E{
    int next; //直接相邻的节点
    int c; //表示边的权值
};


int main()
{
    int n,m;
    vector<E> edge[101];
    bool mark[101];
    int Dis[101];
    while(cin>>n>>m&&n){
        //先清空链表
        for(int i=1;i<=n;i++)
            edge[i].clear();
        //邻接链表来存储图
        for(int i=0;i<m;i++){
            int A,B,C;
            cin>>A>>B>>C;
            E temp_edge;
            temp_edge.c = C;
            temp_edge.next = B;
            edge[A].push_back(temp_edge);
            temp_edge.next = A;
            edge[B].push_back(temp_edge);
        }
        //初始化
        for(int i=1;i<=n;i++){
            Dis[i]=-1;
            mark[i]=false;
        }
        Dis[1]=0;
        mark[1]=true;
        int newP = 1;
        for(int i=1;i<n;i++){
            for(int j=0;j<edge[newP].size();j++){
                int t = edge[newP][j].next;
                int c = edge[newP][j].c;
                if(mark[t]) continue;
                //更新最短路径
                if(Dis[t]==-1||Dis[t]>Dis[newP]+c)
                    Dis[t] = Dis[newP]+c;
            }
            //将最短的加入集合K
            int min = 123123123;
            for(int j=1;j<=n;j++){
                if(mark[j]||Dis[j]==-1) continue;
                if(Dis[j]<min){
                    min = Dis[j];
                    newP = j;
                }
            }
            mark[newP] = true;
        }
        cout<<Dis[n]<<endl;
    }
    return 0;
}
阅读更多

扫码向博主提问

去开通我的Chat快问

nghuyong

非学,无以致疑;非问,无以广识
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/nghuyong/article/details/70230767
个人分类: 机试
想对作者说点什么? 我来说一句

A*算法最短路径 算法

2010年04月28日 6.5MB 下载

用遗传算法求解最短路径问题

2015年10月04日 231KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭