迁移学习
文章平均质量分 77
《迁移学习》书籍内容解读。
_Summer tree
这个作者很懒,什么都没留下…
展开
-
《迁移学习》chap02 基于样本的迁移学习
文章目录内容框架系列文章Chap 02 基于样本的迁移学习2.1 引用2.2 NTL2.3 ITL内容框架系列文章《迁移学习》chap01 绪论Chap 02 基于样本的迁移学习2.1 引用基于样本的迁移学习的两个关键问题:如何筛选出源域中与目标域数据具有相似分布的有标签样本。如何利用这些“相似”的数据训练处一个更准确的目标域上的学习模型。如果源域和目标域的边缘分布不同,但条件概率分布相同,则将问题称为** 非归纳式迁移学习(NTL)**如果源域和目标域的边缘分布不同,且条件概率分原创 2021-04-09 18:18:32 · 1382 阅读 · 0 评论 -
《迁移学习》chap01 绪论
文章目录内容框架Chap 01 绪论1.1 迁移学习1. 2 迁移学习的定义1.3 与已有机器学习范式的关系1.4 迁移学习的基础研究问题1.5 迁移学习应用内容框架Chap 01 绪论1.1 迁移学习我们无法获得各个领域的大量训练数据的原因应用场景数据量小机器学习模型需要强鲁棒性。个性化和定制问题用户隐私和数据安全迁移学习已经在以下不同术语下得到了广泛的研究:知识重用基于案例的推理类比学习领域自适应预训练和微调1. 2 迁移学习的定义在分类问题中,标签时离散值,表原创 2021-04-09 17:37:01 · 477 阅读 · 1 评论
分享