MATLAB的矩阵有两种存储方式,完全存储方式和稀疏存储方式
1.完全存储方式
将矩阵的全部元素按列存储,矩阵中的全部零元素也存储到矩阵中。
2.稀疏存储方式
仅存储矩阵所有的非零元素的值及其位置,即行号和列号,显然这对于具有大量零元素的稀疏矩阵来说是十分有效的。
设
1 0 0 0
A= 0 5 0 0
2 0 0 7
是具有稀疏矩阵特征的矩阵,其完全存储方式是按列存储的全部12个元素
1,0,2,0,5,0,0,0,0,0,0,7
其稀疏存储方式如下:
(1,1),1,(3,1),2,(2,2),5,(3,4),7
括号内为元素的行列位置,后面为元素值。
当矩阵非常的“稀疏”时,会有效的节省存储空间。
1.1.2稀疏存储方式的产生
1.将完全存储方式转化为稀疏存储方式
A=sparse(S);将S矩阵转换为稀疏矩阵A;
sparse(m,n);产生m*n的所有元素都为0的稀疏矩阵
sparse(u,v,S);S为建立系数矩阵的非零元素,u(i),v(i)分别为S(i)的行和列下标,S,u,v为等长向量。
[u,v,S]=find(A);返回矩阵A中非零元素的下标和元素,返回值可以作为sparse(u,v,S);的参数
full(A);返回和稀疏存储方式A对应的完全存储方式。
例如
X=[2,0,0,0,0;0,0,0,0,0;0,0,0,5,0;0,1,0,0,-1;0,0,0,0,-5]
A=sparse(X)
A=
(1,1) 2
(4,2) 1
(3,4) 5
(4,5) -1
(5,5) -5
A就是X的稀疏存储方式。
2.产生稀疏存储矩阵
sparse可以讲完全存储方式转换为稀疏存储方式,那么,当使用稀疏矩阵时,要先产生完全存储方式的矩阵,然后再转换,这显然是不可取的,MATLAB有自己产生稀疏矩阵的函数spconvert:
B=spconvert(A);A为一个m*3或m*4的矩阵,A的每一列的意义分别为:
(i,1)第i非零元素所在行
(i,2)第i非零元素所在列
(i,3)第i非零元素的实部
(i,4)第i非零元素的虚部
3.带状(对角)稀疏矩阵
函数 spdiags
格式 [B,d] = spdiags(A) %从矩阵A中提取所有非零对角元素,这些元素保存在矩阵B中,向量d表示非零元素的对角线位置。
B = spdiags(A,d) %从A中提取由d指定的对角线元素,并存放在B中。
A = spdiags(B,d,A) %用B中的列替换A中由d指定的对角线元素,输出稀疏矩阵。
A = spdiags(B,d,m,n) %产生一个m×n稀疏矩阵A,其元素是B中的列元素放
在由d指定的对角线位置上。
例1
>>A = [11 0 13 0
0 22 0 24
0 0 33 0
41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74];
>>[B,d] = spdiags(A)
B =
41 11 0
52 22 0
63 33 13
74 44 24
d =
-3 %表示B的第1列元素在A中主对角线下方第3条对角线上
0 %表示B的第2列在A的主对角线上
2 %表示B的第3列在A的主对角线上方第2条对角线上
例1
>> B=[1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16];
>> d=[-2 0 1 3];
>> A=spdiags(B,d,4,4);
>> full(A)
ans =
2 7 0 16
0 6 11 0
1 0 10 15
0 5 0 14
4.单位矩阵的稀疏矩阵
speye(m,n);产生m*n的稀疏存储单位阵。
遍历
>> A = [0 1 0; 2 0 0; 1 0 1]
A =
0 1 0
2 0 0
1 0 1
>> B = sparse(A)
B =
(2,1) 2
(3,1) 1
(1,2) 1
(3,3) 1
>> C = find(B)
C =
2
3
4
9
>>
for i = C
B(i)
end
ans =
(1,1) 2
(2,1) 1
(3,1) 1
(4,1) 1