一、RSA秘钥生成原理
- 随意选择两个大的素数
和
,并且保证
,计算
- 根据欧拉函数,
。 - 选择一个小于
的整数
,使
与
互质。并求得
关于
的模逆元,命名为
(求
令)。(模逆元存在,当且仅当
与r互质)。 - 将
和
的记录销毁,
作为公钥,
作为私钥
。
二、RSA加密原理
- 对于待加密的消息
,将其以特定的格式编码得到
。 - 使用公钥
本文深入探讨RSA算法,包括秘钥生成、加密解密过程,以及欧拉函数和欧拉定理在算法中的关键作用。通过理解这些原理,可以更好地掌握这种广泛用于信息安全的非对称加密技术。
和
,并且保证
,计算
。
的整数
,使
与
互质。并求得
关于
的模逆元,命名为
(求
令
与r互质)。
和
的记录销毁,
作为公钥,
作为私钥
。
,将其以特定的格式编码得到
。
4305

被折叠的 条评论
为什么被折叠?