opencv学习——最小二乘法拟合直线

 最小二乘法拟合直线

概念:最小二乘法多项式直线拟合,根据给定的点,求出它的函数y=f(x),当然求得准确的函数是不太可能的,但是我们能求出它的近似曲线y=φ(x)

 

原理
假设有点  , I = 1,2,3,……n,求近似曲线y=φ(x),并且使得y=φ(x)与y=f(x)的平方偏差和最小,偏差

  

 

 

其中我们要找到一组最好的a b ,“最好的”就是要使选出的a b能使得所有的误差达到最小化。

在此要注意以下,y=ax+b 这里面的未知量是什么,很自然的说法是x y,实际上并不是,我们不用去解这个x和y ,因为x和y已经是给定的值了,当我们在找这条直线的时候,我们实际上并不关心x的值有多好,我们要的就是a 和b这两个变量,它们可以描述x和y之间的关系,我们就是在试图找出那条最适合的直线所对应的a和b。

 


可以看到最小二乘法对各个变量求偏导,使得偏导值为0,即可得到最小值,因为e是关于a b的函数,导数为0的点必定是最小值,进入正题

 分别对 a b求偏导可以得到:


关于solve函数 ,可以在这个链接查看用法:solve函数使用

接下来上代码

#include<iostream>
#include<opencv2\opencv.hpp>
using namespace std;
using namespace cv;


int main()
{
	vector<Point>points;
	//(27 39) (8 5) (8 9) (16 22) (44 71) (35 44) (43 57) (19 24) (27 39) (37 52)

	points.push_back(Point(27, 39));
	points.push_back(Point(8, 5));
	points.push_back(Point(8, 9));
	points.push_back(Point(16, 22));
	points.push_back(Point(44, 71));
	points.push_back(Point(35, 44));
	points.push_back(Point(43, 57));
	points.push_back(Point(19, 24));
	points.push_back(Point(27, 39));
	points.push_back(Point(37, 52));
	Mat src = Mat::zeros(400, 400, CV_8UC3);

	for (int i = 0;i < points.size();i++)
	{
		//在原图上画出点
		circle(src, points[i], 3, Scalar(0, 0, 255), 1, 8);
	}
	//构建A矩阵 
	int N = 2;
	Mat A = Mat::zeros(N, N, CV_64FC1);

	for (int row = 0;row < A.rows;row++)
	{
		for (int col = 0; col < A.cols;col++)
		{
			for (int k = 0;k < points.size();k++)
			{
				A.at<double>(row, col) = A.at<double>(row, col) + pow(points[k].x, row + col);
			}
		}
	}
	//构建B矩阵
	Mat B = Mat::zeros(N, 1, CV_64FC1);
	for (int row = 0;row < B.rows;row++)
	{

		for (int k = 0;k < points.size();k++)
		{
			B.at<double>(row, 0) = B.at<double>(row, 0) + pow(points[k].x, row)*points[k].y;
		}
	}
	//A*X=B
	Mat X;
	//cout << A << endl << B << endl;
	solve(A, B, X,DECOMP_LU);
	cout << X << endl;
	vector<Point>lines;
	for (int x = 0;x < src.size().width;x++)
	{				// y = b + ax;
		double y = X.at<double>(0, 0) + X.at<double>(1, 0)*x;
		printf("(%d,%lf)\n", x, y);
		lines.push_back(Point(x, y));
	}
	polylines(src, lines, false, Scalar(255, 0, 0), 1, 8);
	imshow("src", src);
	
	//imshow("src", A);
	waitKey(0);
	return 0;
}

可以看到如下结果


已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页