面试题13-在o(1)时间删除链表结点

在数据结构中学到过,主要就是注意使用情况,每种情况都考虑到,具体代码如下:

void DeleteNode(ListNode *pListHead, ListNode *pToBeDeleted)
{
	if(pListHead == NULL || pToBeDeleted == NULL)
	{
		return ;
	}
	if(pListHead == pToBeDeleted)
	{//if删除的是头节点
		pListHead = pListHead->m_pNext;
		free(pToBeDeleted);
	}
	else if(pToBeDeleted->m_pNext==NULL)
	{//删除最后一个节点,需要遍历删除
		ListNode *pnode = pListHead;
		while(pnode->m_pNext != pToBeDeleted)
		{
			pnode = pnode->m_pNext;
		}
		pnode->m_pNext = NULL;
		free(pToBeDeleted);
	}
	else
	{
		pToBeDeleted->m_nValue = pToBeDeleted->m_pNext->m_nValue;
		ListNode *ptemp = pToBeDeleted->m_pNext;
		pToBeDeleted->m_pNext = pToBeDeleted->m_pNext->m_pNext;
		free(ptemp);
	}

}


AI实战-出租车价格数据集析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值