Floyd求最短路径

Floyd求最短路径
相比于Dijkstra算法来说,Floyd算法真的是容易理解多了,仅仅需要邻接矩阵,还有一个三重循环即可,但是比Dijkstra算法的复杂度要高,各有各的优点,自己选择即可。
实现代码如下:

#include<iostream>
#include<cstring>
const int Maxsize=100;
const int Max=10000000;
using namespace std;
string panduan(int i)//同上
{
    string str="v";
    int j=i;
    string news=str + to_string(i);;
    return news;
}

void Floyd(int dis[Maxsize][Maxsize],int v)
{
    int vex=v;
    string path[Maxsize][Maxsize];
    for(int i=0;i<vex;i++)
    {
        for(int j=0;j<vex;j++)
        {
            if(dis[i][j]!=Max)//不为自己预设的最大值就代表着两个节点之间存在路径
            {
                path[i][j]=panduan(i)+" "+panduan(j);
            }
            else
            {
                 path[i][j]="";
            }
        }
    }
    for(int k=0;k<vex;k++)//在两个节点之间都插入一遍其他所有节点,如果小的话就更新权值
    {
        for(int i=0;i<vex;i++)
        {
            for(int j=0;j<vex;j++)
            {
                if(dis[i][k]+dis[k][j]<dis[i][j])
                {
                    dis[i][j]=dis[i][k]+dis[k][j];
                    path[i][j]=path[i][k]+" "+panduan(j);
                }
            }
        }
    }
    for(int i=0;i<vex;i++)//输出每两个节点之间的权值,如果仍未自己预设的最大值那么证明不存在路径,输入“no answer”
    {
        for(int j=0;j<vex;j++)
        {
            if(i!=j)
            {
                if(dis[i][j]==Max)
            {
                cout<<"no answer";
            }
            else
            {
                cout<<dis[i][j]<<" "<<path[i][j]<<endl;
            }
            }
        }
    }

}
int main()
{
    int v,a,s,e;
    cin>>v>>a;
    int dis[Maxsize][Maxsize];
    for(int i=0;i<v;i++)
    {
        for(int j=0;j<v;j++)
        {
            dis[i][j]=0;
        }
    }
    int from,tail,zhi;
    for(int i=0;i<a;i++)
    {
        cin>>from>>tail>>zhi;
        dis[from][tail]=zhi;
    }
    for(int i=0;i<v;i++)
    {
        for(int j=0;j<v;j++)
        {
            if(dis[i][j]==0)
            {
                dis[i][j]=Max;
            }
        }
    }
    Floyd(dis,v);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值