Floyd求最短路径
相比于Dijkstra算法来说,Floyd算法真的是容易理解多了,仅仅需要邻接矩阵,还有一个三重循环即可,但是比Dijkstra算法的复杂度要高,各有各的优点,自己选择即可。
实现代码如下:
#include<iostream>
#include<cstring>
const int Maxsize=100;
const int Max=10000000;
using namespace std;
string panduan(int i)//同上
{
string str="v";
int j=i;
string news=str + to_string(i);;
return news;
}
void Floyd(int dis[Maxsize][Maxsize],int v)
{
int vex=v;
string path[Maxsize][Maxsize];
for(int i=0;i<vex;i++)
{
for(int j=0;j<vex;j++)
{
if(dis[i][j]!=Max)//不为自己预设的最大值就代表着两个节点之间存在路径
{
path[i][j]=panduan(i)+" "+panduan(j);
}
else
{
path[i][j]="";
}
}
}
for(int k=0;k<vex;k++)//在两个节点之间都插入一遍其他所有节点,如果小的话就更新权值
{
for(int i=0;i<vex;i++)
{
for(int j=0;j<vex;j++)
{
if(dis[i][k]+dis[k][j]<dis[i][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=path[i][k]+" "+panduan(j);
}
}
}
}
for(int i=0;i<vex;i++)//输出每两个节点之间的权值,如果仍未自己预设的最大值那么证明不存在路径,输入“no answer”
{
for(int j=0;j<vex;j++)
{
if(i!=j)
{
if(dis[i][j]==Max)
{
cout<<"no answer";
}
else
{
cout<<dis[i][j]<<" "<<path[i][j]<<endl;
}
}
}
}
}
int main()
{
int v,a,s,e;
cin>>v>>a;
int dis[Maxsize][Maxsize];
for(int i=0;i<v;i++)
{
for(int j=0;j<v;j++)
{
dis[i][j]=0;
}
}
int from,tail,zhi;
for(int i=0;i<a;i++)
{
cin>>from>>tail>>zhi;
dis[from][tail]=zhi;
}
for(int i=0;i<v;i++)
{
for(int j=0;j<v;j++)
{
if(dis[i][j]==0)
{
dis[i][j]=Max;
}
}
}
Floyd(dis,v);
}
1万+

被折叠的 条评论
为什么被折叠?



