数据结构

遍历二叉树

㈠先序遍历的操作定义如下:

若二叉树为空,则空操作,否则
    	①访问根结点
    	②先序遍历左子树
    	③先序遍历右子树
    	void preorder(tree bt)  //先序遍历根结点为bt的二叉树的递归算法
    	{
    	    if(bt)
    	   {
    	      cout << bt->data;
    	      preorder(bt->lchild);
    	      preorder(bt->rchild);
    	   }
    	}

㈡中序遍历的操作定义如下:

若二叉树为空,则空操作,否则                           
	①中序遍历左子树
 	②访问根结点
	③中序遍历右子树
   void inorder(tree bt)  //中序遍历根结点为bt的二叉树的递归算法
   {
       if(bt)
       {
   	inorder(bt->lchild);
   	cout << bt->data;
   	inorder(bt->rchild);
       }
   }

㈢后序遍历的操作定义如下:

若二叉树为空,则空操作,否则
	①后序遍历左子树
	②后序遍历右子树
	③访问根结点
	void postorder(tree bt)  //后序遍历根结点为bt的二叉树的递归算法
	{
  	  if(bt)
	    {
 	       postorder(bt->lchild);
  	      postorder(bt->rchild);
 	       cout << bt->data;
 	   }
	}

二叉树的其它重要操作

1、建立一棵二叉树
	void pre_crt(tree &bt) //按先序次序输入二叉树中结点的值,生成
	{
		char ch;
		ch = getchar();  //二叉树的单链表存储结构,bt为指向根结点的指针,'$'表示空树 
		if(ch != '$')
		{
			bt = new node;      //建根结点
			bt->data = ch;
			pre_crt(bt->lchild);  //建左子树
			pre_crt(bt->rchild);  //建右子树
		}
		else bt = NULL;
	}

2、删除二叉树

void dis(tree &bt)           //删除二叉树
	{
		if(bt)
		{
			dis(bt->lchild);     //删左子树
			dis(bt->rchild);     //删右子树
			delete bt;          //释放父结点
		}
	}

3.插入一个结点到排序二叉树中

void insert(tree &bt, int n)    //插入一个结点到排序二叉树中
	{
		if(bt)
		{
			if(n < bt->data) insert(bt->lchild, n);
			else if(n > bt->data) insert(bt->rchild, n);
		}
		else
		{
			bt = new node;      //新开一个空间
			bt->data = n;
			bt->lchild = bt->rchild = NULL;
		}
	}	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值