完全图:一个n 阶的完全无向图含有n*(n-1)/2 条边;一个n 阶的完全有向图含有n*(n-1)条边;
稠密图:一个边数接近完全图的图。
稀疏图:一个边数远远少于完全图的图。
强连通分量:有向图中任意两点都连通的最大子图。右图中,1-2-5构成一个强连通分量。特殊地,单个点也算一个强连通分量,所以右图有三个强连通分量:1-2-5,4,3
深度优先与广度优先遍历
从图中某一顶点出发系统地访问图中所有顶点,使每个顶点恰好被访问一次,这种运算操作被称为图的遍历。为了避免重复访问某个顶点,可以设一个标志数组visited[i],未访问时值为false,访问一次后就改为true。
图的遍历分为深度优先遍历和广度优先遍历两种方法,两者的时间效率都是O(n*n)。
1.深度优先遍历
深度优先遍历与深搜DFS相似,从一个点A出发,将这个点标为已访问visited[i]:=true;,然后再访问所有与之相连,且未被访问过的点。当A的所有邻接点都被访问过后,再退回到A的上一个点(假设是B),再从B的另一个未被访问的邻接点出发,继续遍历。
例如对右边的这个无向图深度优先遍历,假定先从1出发
程序以如下顺序遍历:
1→2→5,然后退回到2,退回到1。
从1开始再访问未被访问过的点3 ,3没有未访问的邻接点,退回1。
再从1开始访问未被访问过的点4,再退回1 。
起点1的所有邻接点都已访问,遍历结束。
7249

被折叠的 条评论
为什么被折叠?



