日志是软件开发中不可或缺的一部分,它能帮助我们了解应用运行状态、调试问题和监控性能。
在项目中,使用正确的使用和记录日志不仅能提高代码可维护性,还能在生产环境中更快地排查问题。
1. 使用SLF4J门面模式统一日志API
SLF4J (Simple Logging Facade for Java) 提供了统一的日志API接口,让你可以轻松切换底层日志实现。
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class UserService {
// 获取Logger实例
private static final Logger logger = LoggerFactory.getLogger(UserService.class);
public void createUser(User user) {
logger.info("Creating user: {}", user.getUsername());
// 业务逻辑
}
}
最佳实践:始终使用SLF4J作为日志门面,避免直接依赖具体实现如Log4j或Logback,这样可以在不修改代码的情况下切换底层日志框架。
2. 使用参数化日志替代字符串拼接
字符串拼接在日志中是常见的性能陷阱,正确的做法是使用参数化日志。
// 错误示例 - 即使日志级别不满足也会执行字符串拼接
logger.debug("Processing order: " + order.getId() + " with amount: " + order.getAmount());
// 正确示例 - 只有在日志级别满足时才会执行参数替换
logger.debug("Processing order: {} with amount: {}", order.getId(), order.getAmount());
性能提升:参数化日志避免了不必要的字符串拼接操作,特别是当日志级别高于DEBUG时,可以节省大量CPU资源。
3. 使用条件日志避免高成本计算
对于需要复杂计算的日志信息,应该先检查日志级别。
// 检查日志级别再执行耗时操作
if (logger.isDebugEnabled()) {
logger.debug("Complex calculation result: {}", calculateExpensiveValue());
}
应用场景:当日志内容需要复杂计算或资源密集型操作时,这一方法能显著提高性能。
4. 合理使用不同日志级别
选择正确的日志级别对于控制日志输出量和重要性至关重要。
// 跟踪详细信息
logger.trace("Entering method with parameters: {}", params);
// 调试信息
logger.debug("Processing item at index: {}", index);
// 正常业务流程信息
logger.info("User {} successfully logged in", username);
// 警告信息
logger.warn("Database connection pool is running low: {} connections left", availableConnections);
// 错误信息
logger.error("Failed to process transaction", exception);
最佳实践:
-
• TRACE:仅用于非常详细的诊断信息
-
• DEBUG:用于开发和调试信息
-
• INFO:用于记录正常业务流程
-
• WARN:潜在问题但不影响正常运行
-
• ERROR:错误导致功能无法正常工作
5. MDC (Mapped Diagnostic Context) 上下文信息添加
MDC是一个非常强大的工具,可以在整个调用链上传递上下文信息。
import org.slf4j.MDC;
// 在请求处理开始添加上下文
MDC.put("userId", user.getId());
MDC.put("requestId", UUID.randomUUID().toString());
try {
// 业务逻辑处理
logger.info("Processing user request");
// 所有日志都会自动包含MDC中的上下文信息
} finally {
// 请求结束后清理上下文
MDC.clear();
}
配置Logback输出MDC信息:
<pattern>%d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} [userId:%X{userId}, requestId:%X{requestId}] - %msg%n</pattern>
应用场景:微服务架构中的请求跟踪、用户操作审计、多租户系统中的租户识别。
6. 异常日志记录最佳实践
记录异常时,既要提供上下文信息,也要包含完整的堆栈信息。
try {
// 业务逻辑
} catch (DatabaseException e) {
// 提供上下文和完整堆栈
logger.error("Failed to save user data for userId: {}", userId, e);
// 不要这样做 - 丢失堆栈信息
// logger.error("Failed to save user data: " + e.getMessage());
}
最佳实践:始终将异常对象作为日志方法的最后一个参数,这样可以捕获完整堆栈信息。
7. 使用日志标记分类信息
在复杂系统中,可以使用标记来分类不同类型的日志信息。
// 使用Logback的Marker功能
import org.slf4j.Marker;
import org.slf4j.MarkerFactory;
public class SecurityService {
private static final Logger logger = LoggerFactory.getLogger(SecurityService.class);
private static final Marker SECURITY_MARKER = MarkerFactory.getMarker("SECURITY");
public void login(String username, boolean success) {
logger.info(SECURITY_MARKER, "Login attempt: user={}, success={}", username, success);
}
}
过滤特定标记的日志:
<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression>marker.contains("SECURITY")</expression>
</evaluator>
<OnMatch>ACCEPT</OnMatch>
<OnMismatch>DENY</OnMismatch>
</filter>
8. 结构化日志输出(JSON格式)
在微服务环境中,结构化日志便于集中式日志分析工具处理。
添加Logstash编码器依赖:
<dependency>
<groupId>net.logstash.logback</groupId>
<artifactId>logstash-logback-encoder</artifactId>
<version>7.2</version>
</dependency>
Logback配置:
<appender name="JSON" class="ch.qos.logback.core.ConsoleAppender">
<encoder class="net.logstash.logback.encoder.LogstashEncoder">
<includeMdcKeyName>userId</includeMdcKeyName>
<includeMdcKeyName>requestId</includeMdcKeyName>
</encoder>
</appender>
使用效果:所有日志将输出为JSON格式,便于ELK或类似系统解析。
9. 实现自定义日志格式
针对特定需求,可以创建自定义的日志格式。
// 创建自定义日志消息格式化器
public class CustomLogMessageFormatter {
public static String formatTransaction(String txId, String status, long duration) {
return String.format("TX[%s] completed with status %s in %dms", txId, status, duration);
}
}
// 在代码中使用
logger.info(CustomLogMessageFormatter.formatTransaction("TX12345", "SUCCESS", 134));
最佳实践:对于频繁使用的复杂日志格式,封装成专用方法可以提高代码可读性和一致性。
10. 使用异步日志提升性能
日志I/O操作可能成为性能瓶颈,异步日志可以显著提升应用性能。
性能要求极高的场景推荐使用log4j2异步模式,性能远高于logback的异步模式。
Logback异步配置:
<appender name="ASYNC" class="ch.qos.logback.classic.AsyncAppender">
<appender-ref ref="FILE" />
<queueSize>512</queueSize>
<discardingThreshold>0</discardingThreshold>
<includeCallerData>false</includeCallerData>
</appender>
<root level="INFO">
<appender-ref ref="ASYNC" />
</root>
性能提升:异步日志可以减少主线程的阻塞,在高并发系统中尤其有效。
11. 日志输出敏感信息处理
处理用户数据时,需要特别注意敏感信息的日志输出。
// 创建敏感数据掩码工具
public class LogMaskUtil {
public static String maskCardNumber(String cardNumber) {
if (cardNumber == null || cardNumber.length() < 8) {
return "****";
}
return "****" + cardNumber.substring(cardNumber.length() - 4);
}
public static String maskEmail(String email) {
if (email == null || email.isEmpty() || !email.contains("@")) {
return "****@****.com";
}
String[] parts = email.split("@");
return parts[0].substring(0, 1) + "***@" + parts[1];
}
}
// 在日志中使用
logger.info("Processing payment for card: {}", LogMaskUtil.maskCardNumber(card.getNumber()));
logger.info("Sending confirmation to: {}", LogMaskUtil.maskEmail(user.getEmail()));
安全提示:永远不要在日志中记录密码、完整信用卡号、社会安全号码等敏感信息,即使在开发环境中也应如此。
12. 特定业务领域的日志上下文
为不同业务领域创建专用的日志上下文,便于追踪和分析。
// 创建业务上下文日志工具
public class OrderLogContext {
private String orderId;
private String customerId;
private BigDecimal amount;
public OrderLogContext(String orderId, String customerId, BigDecimal amount) {
this.orderId = orderId;
this.customerId = customerId;
this.amount = amount;
}
public void setupContext() {
MDC.put("orderId", orderId);
MDC.put("customerId", customerId);
MDC.put("amount", amount.toString());
}
public void clearContext() {
MDC.remove("orderId");
MDC.remove("customerId");
MDC.remove("amount");
}
// 使用try-with-resources模式
public static class LogContextResource implements AutoCloseable {
private final OrderLogContext context;
public LogContextResource(OrderLogContext context) {
this.context = context;
this.context.setupContext();
}
@Override
public void close() {
this.context.clearContext();
}
}
}
// 在代码中使用
try (OrderLogContext.LogContextResource ignored =
new OrderLogContext.LogContextResource(new OrderLogContext(order.getId(),
order.getCustomerId(),
order.getAmount()))) {
logger.info("Processing order");
orderService.process(order);
logger.info("Order completed successfully");
}
13. 日志性能监控与计时
使用日志记录操作执行时间,帮助识别性能瓶颈。
// 简易性能日志
public class PerformanceLogger {
private static final Logger logger = LoggerFactory.getLogger(PerformanceLogger.class);
public static <T> T logExecutionTime(String operationName, Supplier<T> operation) {
long startTime = System.currentTimeMillis();
try {
return operation.get();
} finally {
long duration = System.currentTimeMillis() - startTime;
logger.info("Operation [{}] completed in {}ms", operationName, duration);
}
}
// 无返回值版本
public static void logExecutionTime(String operationName, Runnable operation) {
long startTime = System.currentTimeMillis();
try {
operation.run();
} finally {
long duration = System.currentTimeMillis() - startTime;
logger.info("Operation [{}] completed in {}ms", operationName, duration);
}
}
}
// 使用示例
User user = PerformanceLogger.logExecutionTime("fetchUserProfile",
() -> userService.getUserById(userId));
14. 条件日志收集器
对于需要收集多条日志然后一次性输出的场景,可以实现日志收集器。
// 日志收集器
public class LogCollector {
private final List<String> messages = new ArrayList<>();
private final Logger logger;
private final Level level;
public LogCollector(Logger logger, Level level) {
this.logger = logger;
this.level = level;
}
public void add(String message) {
messages.add(message);
}
public void add(String format, Object... args) {
messages.add(String.format(format, args));
}
public void flush(String summary) {
if (messages.isEmpty()) {
return;
}
StringBuilder sb = new StringBuilder(summary);
sb.append(":\n");
for (int i = 0; i < messages.size(); i++) {
sb.append(" ").append(i + 1).append(". ")
.append(messages.get(i)).append("\n");
}
switch (level.toString()) {
case "DEBUG":
logger.debug(sb.toString());
break;
case "INFO":
logger.info(sb.toString());
break;
case "WARN":
logger.warn(sb.toString());
break;
case "ERROR":
logger.error(sb.toString());
break;
}
messages.clear();
}
}
// 使用示例
LogCollector collector = new LogCollector(logger, Level.INFO);
for (Item item : items) {
try {
processItem(item);
collector.add("Item %s processed successfully", item.getId());
} catch (Exception e) {
collector.add("Failed to process item %s: %s", item.getId(), e.getMessage());
}
}
collector.flush("Batch processing results");
总结
良好的日志实践不仅能帮助开发者更快地调试问题,还能为生产环境监控和故障排除提供宝贵的信息。
好的日志应该像讲故事一样,清晰地描述应用的运行状态和流程,帮助我们快速理解系统行为。