BZOJ3238 || 洛谷P4248 [AHOI2013]差异【后缀数组+单调栈】

本文深入探讨了字符串相似度计算的问题,通过分析不同后缀之间的最长公共前缀(LCP),提出了一种高效的算法来优化计算过程。利用高度数组和单调栈,文章详细解释了如何减少时间复杂度,避免了直接O(n^2)枚举的方法。

Time Limit: 20 Sec
Memory Limit: 512 MB

Description

在这里插入图片描述

Input

一行,一个字符串S

Output

一行,一个整数,表示所求值

HINT

2<=N<=500000,S由小写英文字母组成


题目分析

试着先把原式稍作变换
∑1&lt;=i&lt;j&lt;=nlen(Ti)+len(Tj)−2∗lcp(Ti,Tj)\sum_{1&lt;=i&lt;j&lt;=n}len(T_i)+len(T_j)-2*lcp(T_i,T_j)1<=i<j<=nlen(Ti)+len(Tj)2lcp(Ti,Tj)

=(∑1&lt;=i&lt;j&lt;=ni+j)−(∑1&lt;=i&lt;j&lt;=n2∗lcp(Ti,Tj))=(\sum_{1&lt;=i&lt;j&lt;=n}i+j)-(\sum_{1&lt;=i&lt;j&lt;=n}2*lcp(T_i,T_j))=(1<=i<j<=ni+j)(1<=i<j<=n2lcp(Ti,Tj))

=(n−1)∗n∗(n+1)2−∑1&lt;=i&lt;j&lt;=n2∗lcp(Ti,Tj)=\frac{(n-1)*n*(n+1)}{2}-\sum_{1&lt;=i&lt;j&lt;=n}2*lcp(T_i,T_j)=2(n1)n(n+1)1<=i<j<=n2lcp(Ti,Tj)

一开始令ans=(n−1)∗n∗(n+1)2ans=\frac{(n-1)*n*(n+1)}{2}ans=2(n1)n(n+1),剩下的就是求不同后缀两两间lcp长度的和
直接O(n2)O(n^2)O(n2)枚举肯定T爆,于是考虑是否能用height数组解决

我们知道 排名为xxx和排名为yyy的后缀的lcp就是Mini=x+1y(height[i])Min_{i=x+1}^y(height[i])Mini=x+1y(height[i])
所以可以枚举每个height[i]作为最小值(从2到n)
利用单调栈分别找到左右两边第一个小于它的height的位置
假设这两个位置分别为L,RL,RL,R
那么lcp长度为height[i]的两个不同后缀的组数就增加了(R−i)∗(i−L)(R-i)*(i-L)(Ri)(iL)
ans−=2∗(R−i)∗(i−L)∗height[i]ans-=2*(R-i)*(i-L)*height[i]ans=2(Ri)(iL)height[i]


#include<iostream>
#include<cmath>
#include<algorithm>
#include<map>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;
 
int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}
 
const int maxn=500010;
lt n,m;
int a[maxn];
int rak[maxn],sa[maxn],tp[maxn],tax[maxn];
lt height[maxn];
int st[maxn],top;
lt L[maxn],R[maxn],ans;
char ss[maxn];
 
void rsort()
{
    for(int i=0;i<=m;++i) tax[i]=0;
    for(int i=1;i<=n;++i) tax[rak[i]]++;
    for(int i=1;i<=m;++i) tax[i]+=tax[i-1];
    for(int i=n;i>=1;--i) sa[tax[rak[tp[i]]]--]=tp[i];
}
 
void SA()
{
    m=256;
    for(int i=1;i<=n;++i)
    rak[i]=a[i],tp[i]=i;
    
    rsort();
    for(int k=1;k<=n;k<<=1)
    {
        int p=0;
        for(int i=n-k+1;i<=n;++i) tp[++p]=i;
        for(int i=1;i<=n;++i) if(sa[i]>k) tp[++p]=sa[i]-k;
        
        rsort();
        swap(rak,tp);
        rak[sa[1]]=p=1;
        for(int i=2;i<=n;++i)
        rak[sa[i]]=(tp[sa[i]]==tp[sa[i-1]]&&tp[sa[i]+k]==tp[sa[i-1]+k])?p:++p;
        if(p>=n) break;
        m=p;
    }
}
 
void getH()
{
    int k=0;
    for(int i=1;i<=n;++i)
    {
        if(k) k--;
        int j=sa[rak[i]-1];
        while(a[i+k]==a[j+k]) k++;
        height[rak[i]]=k;
    }
}
 
int main()
{
    scanf("%s",&ss); 
    n=strlen(ss);
    
    for(int i=0;i<n;++i) a[i+1]=ss[i];
    SA(); getH();
    
    st[top=1]=1;
    for(int i=2;i<=n;++i) 
    {
        while(top&&height[i]<=height[st[top]]) R[st[top--]]=i;
        L[i]=st[top];
        st[++top]=i;
    } 
    while(top) R[st[top--]]=n+1;
    
    ans=n*(n-1)*(n+1)/2;
    for(lt i=2;i<=n;++i)
    ans-=2ll*(R[i]-i)*(i-L[i])*height[i];
    
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值