Java中文分词hanlp使用


HanLP介绍:http://hanlp.linrunsoft.com/
github地址:https://github.com/hankcs/HanLP
说明:使用hanlp实现分词、智能推荐、关键字提取、摘要等,更多功能参考官网

项目结构

这里写图片描述
该项目中,.jar和data文件夹和.properties需要从官网/github下载data文件夹下载

项目配置

修改hanlp.properties:

#/Test/src/hanlp.properties:
#本配置文件中的路径的根目录
#root=E:/SourceCode/eclipsePlace/Test
root=./
......

配置文件的作用是告诉HanLP数据包即data文件夹的位置,root的值为data文件夹的父目录,可以使用绝对路径或相对路径。

测试代码

package com.test;

import java.util.List;

import com.hankcs.hanlp.HanLP;
import com.hankcs.hanlp.seg.common.Term;
import com.hankcs.hanlp.suggest.Suggester;
import com.hankcs.hanlp.tokenizer.NLPTokenizer;

public class MainTest {
    public static void main(String[] args) {
        System.out.println("首次编译运行时,HanLP会自动构建词典缓存,请稍候……\n");
        //第一次运行会有文件找不到的错误但不影响运行,缓存完成后就不会再有了
        System.out.println("标准分词:");
        System.out.println(HanLP.segment("你好,欢迎使用HanLP!"));
        System.out.println("\n");

        List<Term> termList = NLPTokenizer.segment("中国科学院计算技术研究所的宗成庆教授正在教授自然语言处理课程");
        System.out.println("NLP分词:");
        System.out.println(termList);
        System.out.println("\n");

        System.out.println("智能推荐:");
        getSegement();
        System.out.println("\n");

        System.out.println("关键字提取:");
        getMainIdea();
        System.out.println("\n");

        System.out.println("自动摘要:");
        getZhaiYao();
        System.out.println("\n");

        System.out.println("短语提取:");
        getDuanYu();
        System.out.println("\n");
    }

    /**
     * 智能推荐部分
     */
    public static void getSegement() {
        Suggester suggester = new Suggester();
        String[] titleArray = ("威廉王子发表演说 呼吁保护野生动物\n" + "《时代》年度人物最终入围名单出炉 普京马云入选\n" + "“黑格比”横扫菲:菲吸取“海燕”经验及早疏散\n"
                + "日本保密法将正式生效 日媒指其损害国民知情权\n" + "英报告说空气污染带来“公共健康危机”").split("\\n");
        for (String title : titleArray) {
            suggester.addSentence(title);
        }
        System.out.println(suggester.suggest("发言", 1)); // 语义
        System.out.println(suggester.suggest("危机公共", 1)); // 字符
        System.out.println(suggester.suggest("mayun", 1)); // 拼音
    }

    /**
     * 关键字提取
     */
    public static void getMainIdea() {
        String content = "程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。";
        List<String> keywordList = HanLP.extractKeyword(content, 5);
        System.out.println(keywordList);
    }

    /**
     * 自动摘要
     */
    public static void getZhaiYao() {
        String document = "算法可大致分为基本算法、数据结构的算法、数论算法、计算几何的算法、图的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法、厄米变形模型、随机森林算法。\n"
                + "算法可以宽泛的分为三类,\n" + "一,有限的确定性算法,这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。\n"
                + "二,有限的非确定算法,这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。\n"
                + "三,无限的算法,是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。";
        List<String> sentenceList = HanLP.extractSummary(document, 3);
        System.out.println(sentenceList);
    }

    /**
     * 短语提取
     */
    public static void getDuanYu() {
        String text = "算法工程师\n"
                + "算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法工程师就是利用算法处理事物的人。\n"
                + "\n" + "1职位简介\n" + "算法工程师是一个非常高端的职位;\n" + "专业要求:计算机、电子、通信、数学等相关专业;\n"
                + "学历要求:本科及其以上的学历,大多数是硕士学历及其以上;\n" + "语言要求:英语要求是熟练,基本上能阅读国外专业书刊;\n"
                + "必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。\n" + "\n" + "2研究方向\n"
                + "视频算法工程师、图像处理算法工程师、音频算法工程师 通信基带算法工程师\n" + "\n" + "3目前国内外状况\n"
                + "目前国内从事算法研究的工程师不少,但是高级算法工程师却很少,是一个非常紧缺的专业工程师。算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。\n"
                + "在计算机音视频和图形图像技术等二维信息算法处理方面目前比较先进的视频处理算法:机器视觉成为此类算法研究的核心;另外还有2D转3D算法(2D-to-3D conversion),去隔行算法(de-interlacing),运动估计运动补偿算法(Motion estimation/Motion Compensation),去噪算法(Noise Reduction),缩放算法(scaling),锐化处理算法(Sharpness),超分辨率算法(Super Resolution),手势识别(gesture recognition),人脸识别(face recognition)。\n"
                + "在通信物理层等一维信息领域目前常用的算法:无线领域的RRM、RTT,传送领域的调制解调、信道均衡、信号检测、网络优化、信号分解等。\n" + "另外数据挖掘、互联网搜索算法也成为当今的热门方向。\n"
                + "算法工程师逐渐往人工智能方向发展。";
        List<String> phraseList = HanLP.extractPhrase(text, 10);
        System.out.println(phraseList);
    }
}

运行结果

这里写图片描述

HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用.HanLP具备功能完善,性能高效,架构清晰,语料时新,可自定义的特点。 HanLP提供下列功能: 中文分词 HMM-两字组(速度与精度最佳平衡;一百兆内存) 最短路分词,N-最短路分词 由字构词(侧重精度,全世界最大语料库,可识别新词;适合NLP任务) 感知机分词,CRF分词 词典分词(侧重速度,每秒数千万字符;省内存) 极速词典分词 所有分词器都支持: 索引全切分模式 用户自定义词典 兼容繁体中文 训练用户自己的领域模型 词性标注 HMM词性标注(速度快) 感知机词性标注,CRF词性标注(精度高) 命名实体识别 基于HMM角色标注的命名实体识别(速度快) 中国人名识别,音译人名识别,日本人名识别,地名识别,实体机构名识别 基于线性模型的命名实体识别(精度高) 感知机命名实体识别,CRF命名实体识别 关键词提取 TextRank关键词提取 自动摘要 TextRank自动摘要 短语提取 基于互信息和左右信息熵的短语提取 拼音转换 多音字,声母,韵母,声调 简繁转换 简繁分歧词(简体,繁体,台湾正体,香港繁体) 文本推荐 语义推荐,拼音推荐,字词推荐 依存句法分析 基于神经网络的高性能依存句法分析器 基于ArcEager转移系统的柱搜索依存句法分析器 文本分类 情感分析 文本聚类 KMeans,Repeated Bisection,自动推断聚类数目k word2vec 词向量训练,加载,词语相似度计算,语义运算,查询,KMEANS聚类 文档语义相似度计算 语料库工具 部分默认模型训练自小型语料库,鼓励用户自行训练。模块所有提供训练接口,语料可参考98年人民日报语料库。 在提供丰富功能的同时,HanLP内部模块坚持低耦合,模型坚持惰性加载,服务坚持静态提供,词典坚持明文发布,使用非常方便。默认模型训练自全世界最大规模的中文语料库,同时自带一些语料处理工具,帮助用户训练自己的模型。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值