cnn_mnist_案例详解

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 权重初始化
def weight_variable(shape):
    # 从截断的正态分布中输出随机值。 
    # 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

# 偏置初始化
def bias_variable(shape):    
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 卷积和池化
def conv2d(x, W):
    # x: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape
    # W: 相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数]
    # strides: 卷积时在图像每一维的步长,这是一个一维的向量,长度4
    # padding: string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='VALID')

# mp2*2池化
def max_pool_2x2(x):
    # x: 需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
    # ksize: 池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
    # strides: 和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
    # padding: 和卷积类似,可以取'VALID' 或者'SAME'
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='VALID')

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder("float", [None,10])

# 第一层卷积
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# 第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# 密集连接层
W_fc1 = weight_variable([4 * 4 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 4*4*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# DropOut
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 训练和评估模型
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
# Adam 优化器根据损失函数对每个参数的梯度的一阶矩估计和二阶矩估计动态调整针对于每个参数的学习速率。Adam 也是基于梯度下降的方法,但是每次迭代参数的学习步长都有一个确定的范围,不会因为很大的梯度导致很大的学习步长,参数的值比较稳定。 详细的话:http://www.cnblogs.com/xinchrome/p/4964930.html
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
with sess.as_default():
    for i in range(1000):
        batch = mnist.train.next_batch(50)
        if i%100 == 0:
            train_accuracy = accuracy.eval(feed_dict={
                x:batch[0], y_: batch[1], keep_prob: 1.0}, session=sess)
            print("step {}, training accuracy {}".format(i, train_accuracy))
        train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    print("test accuracy {}".format(accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}, session=sess)))

个人理解: 

 输入图片大小为28*28 单通道

5*5*1*32  5*5卷积核,单通道,32个卷积核

经过第一层卷积层后,输出大小为  28-5+1=24   24*24*32

池化层移动窗口为 1*2*2*1  行列stride均为2

经过第一层池化后,输出大小为   24/2 =12      12*12*32

 

第二层卷积核  5*5*32*64  卷积窗口仍是5*5 通道为32  64个卷积核

经过第二层卷积后 输出大小为12-5+1=8   8*8*64

经过第二层池化(参数同第一层) , 输出大小为4*4*64

最后全连接层:将池化输出平铺成一维的向量reshape[-1,4*4*64]   即1*1024的维度; 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值