Uva 6177 The King's Ups and Downs

题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4188

题意是求1-n 的全排列中有多少呈现高低高低高低或者地高低高形式排列的个数。

这种排列叫做:alternating permutations 或者 Extremal Permutations 。

可以用DP做。

dp(n,k)表示:长度为n,最后一个数为k,最后两个数是递增的  排列的个数;

dp2(n,k)表示:长度为n,最后一个数为k,最后两个数是递减的 排列的个数;

那么:

dp(n,k) = dp2(n,n+1-k) ;

很好理解吧,比如说132(低高低)等价于312(高低高),相对的位置加起来等于4.

那么我们针对dp[n][k]的最后一位进行如下考虑:

最后一位是k,因为dp[n][k]最后两个数字是递增的,所以第n-1位的最大值是k-1。那么我们很容易推导出DP方程:


又:

所以:dp(n,k) = dp(n-1,n+1-k) + dp(n,k-1);

边界条件略。

代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;

#define Maxn 25
#define LL long long
LL dp[Maxn][Maxn];
LL ans[Maxn];


void init()
{
    memset(dp,0,sizeof(dp));
    memset(ans,0,sizeof(ans));
    dp[1][1] = 1;
    ans[1] = 1;
    for(int i=2;i<=20;i++)
    {
        for(int k=2;k<=i;k++)
        {
            dp[i][k] = dp[i-1][i+1-k] + dp[i][k-1];
            ans[i] += dp[i][k];
        }
        ans[i] *=2;
        //printf("%lld\n",ans[i]);
    }
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
#endif
    init();
    int p;
    int m,n;
    scanf(" %d",&p);
    while(p--)
    {
        scanf(" %d %d",&m,&n);
        printf("%d %lld\n",m,ans[n]);
    }
    return 0;
}


©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值