啸林 

能力是后天可培养的,而血性是天生的!

卷积算子计算方法(卷积运算)

卷积算子计算方法(卷积运算) -- 卷积操作是对图像处理时,经常用到的一种操作。它具有增强原信号特征,并且能降低噪音的作用。 那么具体是如何计算的呢?且看下文。 待处理图像数据(5*5):         卷积核:(3*3) A = [17 24  01  08 15            H...

2015-10-08 10:43:52

阅读数:27255

评论数:5

深度学习(DL)与卷积神经网络(CNN)学习随笔-05-基于Python的LeNet之CNN

本文原链接可以查看更多文章      博文01介绍了CNN的基本结构。博文02、03、04依次介绍了卷积操作、LR模型的建立及实现,MLP模型及实现。这些都是作为实现LeNet的铺垫。因为LeNet的实现就是由它们组成的。      今天我们就来讨论一下LeNet的模型建立及实现。   ...

2015-10-07 17:11:42

阅读数:7507

评论数:3

Theano学习笔记01--Dimshuffle()函数

本文主要介绍Theano中的一个函数,名叫dimshuffle()。在做卷积实验室会用到,是用来改变一个array张量结构的一个工具。原来不懂这个函数的作用以及作用后的结果是什么,经过多次实验,终于有了结果。下面来说一下我的结果。仅贡献给尚不懂这个函数的同学。   具体文档尚处在编写中…

2015-10-07 16:26:00

阅读数:15319

评论数:9

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-04-基于Python的LeNet之MLP

本文主要参考于:Multilayer Perceptron   python源代码(github下载  CSDN免费下载)  本文主要介绍含有单隐层的MLP的建模及实现。建议在阅读本博文之前,先看一下LR的实现。因为LR是简化版的MLP。LR不含有单隐层,则其输入层直接连接到输出层。从何处可以看...

2015-10-06 10:17:34

阅读数:6968

评论数:1

python调用dll方法

转载自:http://blog.csdn.net/lf8289/article/details/2322550 在python中调用dll文件中的接口比较简单,实例代码如下: 如我们有一个test.dll文件,内部定义如下: extern "C" { ...

2015-10-28 11:27:52

阅读数:4439

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-19-Containers

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-19-Containers -- 本篇介绍的内容主要是网络层容器。这个容器包含着具有相互关系的各种类型的网络层,他们具有统一的API是Layer。

2015-10-25 22:06:40

阅读数:4256

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-18-Noise Layers

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-18-Noise Layers -- 本篇介绍的内容主要是给输入数据加入高斯噪声的。高斯噪声是指噪声数据服从高斯分布。一般图像处理都是用高斯噪声过滤器进行过滤,而此处加入噪声是为了防止过拟合现象。

2015-10-25 20:54:32

阅读数:5101

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-17-Embedding Layers

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-17-Embedding Layers -- 本篇介绍的内容主要用于NLP(Nature Language Process, 自然语言处理)。Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在...

2015-10-25 20:29:28

阅读数:22570

评论数:4

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-16-Normalization

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-16-Normalization -- 本篇介绍的内容很少,只有一项就是归一化层。顾名思义就是能够对输入输出进行归一化操作的结构层。

2015-10-25 18:21:05

阅读数:10306

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-15-Advanced Activation Layers

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-15-Advanced Activation Layers 前几篇介绍完了主要的核心层—用于构建普通的常用网络,卷积层—主要用于构建卷积神经网络CNN—反馈网络,递归层—主要用于构建递归神经网络/循环神经网络RNN—前...

2015-10-24 01:38:43

阅读数:4361

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-14-递归层

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-14-递归层 recurrent neural network 上一篇介绍了卷基层,可以用来构建很常见的卷积神经网络等模型。那么今天将要介绍的是递归层,是一个可以用来构建递归网络(RNN)的基础部件。具体的RNN知识,...

2015-10-24 00:39:05

阅读数:12780

评论数:1

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-13-卷积层

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-13-卷积层 convolution neural network 上一篇介绍了基础核心层,就是用来构建普通网络的基础部件。这一篇主要介绍的是卷积层,主要用于构建卷积神经网络等需要用到卷积操作的神经网络。卷积操作(可以...

2015-10-23 21:52:09

阅读数:11160

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-12-核心层

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-12-核心层从这篇开始介绍Keras的Layers,就是构成网络的每一层。Keras实现了很多层,包括核心层、卷基层、RNN网络层等诸多常用的网络结构。下面开介绍核心层中包含了哪些内容。因为这个核心层我现在还没有全部用...

2015-10-20 15:11:30

阅读数:27910

评论数:4

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-11-数据集

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-11-数据集 -- 介绍完了使用,就应该自己动手去实践了,因此,这里再介绍一下实验数据的问题。Keras提供了常用的几种数据集的下载,可以直接拿来用,非常方便。下面我们来看一下。

2015-10-18 21:27:46

阅读数:11938

评论数:2

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-10-回调

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-10-回调 -- Callbacks(回调函数)是一组用于在模型训练期间指定阶段被调用的函数。可以通过回调函数查看在模型训练过程中的模型内部信息和统计数据。可以通过传递一个回调函数list给fit()函数,然后相关的回...

2015-10-18 19:26:09

阅读数:13252

评论数:2

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-09-约束限制

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-09-约束限制 -- 除了规则化外,Keras还有一个约束限制功能。函数可以设置在训练网络到最优时对网络参数的约束。这个约束就是限制参数值的取值范围。比如最大值是多少,不允许为负值等。这一部分比较简单,内容很少。

2015-10-18 16:06:39

阅读数:4298

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-08-规则化(规格化)

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-08-规则化(规格化) -- 通过前几篇的介绍,网络已经选择好了优化器、目标函数、模型以及激活函数。并且给权值选择了初始化方法。那么接下来就是训练。训练过程后会出现什么问题呢?过拟合!而有效解决过拟合的方法就是加入规则...

2015-10-18 15:35:03

阅读数:11672

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-07-初始化权值

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-07-初始化权值 -- 模型训练的时候会首先对权值矩阵和偏置进行初始化。有的是把权值初始化为0,但是这种情况不能适用于带有梯度下降算法的网络。因为每次的残差都一样,那么网络参数就达不到最优了。所以一般常用的就是随机数初...

2015-10-18 11:25:38

阅读数:12458

评论数:0

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-06-激活函数

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-06-激活函数 -- 激活函数也是神经网络中一个很重的部分。每一层的网络输出都要经过激活函数。比较常用的有linear,sigmoid,tanh,softmax等。Keras内置提供了很全的激活函数,包括像LeakyR...

2015-10-17 22:07:35

阅读数:13829

评论数:1

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-05-模型

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-05-模型 -- 介绍完了优化器和目标函数,那么剩下的就是训练模型了。这一小节,我们来看一下Keras的Models是如何使用的。Keras可以建立两种模型,一种是线性叠加的,层与层之间是全连接的方式,一个输入,一个输...

2015-10-17 20:34:57

阅读数:37605

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭