tensorflow学习笔记【MNIST数据集输出手写数字识别准确率】

目标:搭建神经网络,在mnist数据集上训练模型,输出手写数字识别的准确率

mnist 数据集:包含 7 万张黑底白字手写数字图片,其中 55000 张为训练集,
5000 张为验证集,10000 张为测试集。每张图片大小为 28*28 像素,图片中纯黑
色像素值为 0,纯白色像素值为 1。数据集的标签是长度为 10 的一维数组,数组
中每个元素索引号表示对应数字出现的概率

在将 mnist 数据集作为输入喂入神经网络时,需先将数据集中每张图片变为长度
784 一维数组,将该数组作为神经网络输入特征喂入神经网络。
例如:
一张数字手写体图片变成长度为 784 的一维数组[0.0.0.0.0.231 0.235 0.459
……0.219 0.0.0.0.]输入神经网络。该图片对应的标签为[0.0.0.0.0.0.1.0. 0.0],标签中索引号为 6 的元素为 1,表示是数字 6 出现的概率为 100%,则该图
片对应的识别结果是 6。

√使用 input_data 模块中的 read_data_sets()函数加载 mnist 数据集:

from tensorflow.examples.tutorials.mnist import input_data 
mnist = input_data.read_data_sets(./data/,one_hot=True)

在 read_data_sets()函数中有两个参数,第一个参数表示数据集存放路径,第
二个参数表示数据集的存取形式。当第二个参数为 Ture 时,表示以独热码形式
存取数据集。read_data_sets()函数运行时,会检查指定路径内是否已经有数据
集,若指定路径中没有数据集,则自动下载,并将 mnist 数据集分为训练集 train、
验证集 validation 和测试集 test 存放。在终端显示如下内容:

Extracting ./data/train-images-idx3-ubyte.gz
Extracting./data/train-labels-idx1-ubyte.gz
Extracting./data/tl0k-images-idx3-ubyte.gz
Extracting ./data/ tl0k-labels-idx1-ubyte.gz

√返回 mnist 数据集中训练集 train、验证集 validation 和测试集 test 样本数

在 Tensorflow 中用以下函数返回子集样本数:

①返回训练集 train 样本数
print “train data size:”,mnist.train.mun_examples
输出结果:train data size:55000

②返回验证集 validation 样本数
print “validation data size:”,mnist.validation.mun_examples
输出结果:validation data size:5000

③返回测试集 test 样本数
print “test data size:”,mnist.test.mun_examples
输出结果:test data size:10000

√使用 train.labels 函数返回 mnist 数据集标签

例如:
在 mnist 数据集中,若想要查看训练集中第 0 张图片的标签,则使用如下函数
mnist.train.labels[0]
输出结果:array([0.,0.,0.,0.,0.,0.,1.,0.,0.,0])

√使用 train.images 函数返回 mnist 数据集图片像素值

例如:
在 mnist 数据集中,若想要查看训练集中第 0 张图片像素值,则使用如下函数
mnist.train.images[0]
输出结果:array([0. ,0. ,0. ,
0. ,0. ,0. ,
0. ,0. ,0. ,
… … …])

√使用 mnist.train.next_batch()函数将数据输入神经网络

例如:

BATCH_SIZE = 200
xs,ys = mnist.train.next_batch(BATCH_SIZE) 
print “xs shape:,xs.shape
print “ys shape:,ys.shape

输出结果:xs.shape(200,784)
输出结果:ys.shape(200,10)

其中,mnist.train.next_batch()函数包含一个参数 BATCH_SIZE,表示随机从训
练集中抽取 BATCH_SIZE 个样本输入神经网络,并将样本的像素值和标签分别赋
给 xs 和 ys。在本例中,BATCH_SIZE 设置为 200,表示一次将 200 个样本的像素
值和标签分别赋值给 xs 和 ys,故 xs 的形状为(200,784),对应的 ys 的形状为
(200,10)。

√实现“Mnist 数据集手写数字识别”的常用函数:

①tf.get_collection(“”)函数表示从 collection 集合中取出全部变量生成
一个列表。
②tf.add( )函数表示将参数列表中对应元素相加。
例如:
x=tf.constant([[1,2],[1,2]])
y=tf.constant([[1,1],[1,2]])
z=tf.add(x,y)
print z
输出结果:[[2,3],[2,4]]
③tf.cast(x,dtype)函数表示将参数 x 转换为指定数据类型。

例如:

A = tf.convert_to_tensor(np.array([[1,1,2,4], [3,4,8,5]])) 
print A.dtype 
b = tf.cast(A, tf.float32) 
print b.dtype

结果输出:
<dtype: ‘int64’>
<dtype: ‘float32’>

从输出结果看出,将矩阵 A 由整数型变为 32 位浮点型。

④tf.equal( )函数表示对比两个矩阵或者向量的元素。若对应元素相等,则返
回 True;若对应元素不相等,则返回 False。
例如:
A = [[1,3,4,5,6]]
B = [[1,3,4,3,2]]
with tf.Session( ) as sess:
print(sess.run(tf.equal(A, B)))
输出结果:[[ True True True False False]]
在矩阵 A 和 B 中,第 1、2、3 个元素相等,第 4、5 个元素不等,故输出结果中,第 1、2、3 个元素取值为 True,第 4、5 个元素取值为 False。

⑤tf.reduce_mean(x,axis)函数表示求取矩阵或张量指定维度的平均值。若不指定第二个参数,则在所有元素中取平均值;若指定第二个参数为 0,则在第一维元素上取平均值,即每一列求平均值;若指定第二个参数为 1,则在第二维元素上取平均值,即每一行求平均值。

例如:

x = [[1., 1.]
[2., 2.]]
print(tf.reduce_mean(x))

输出结果:1.5
print(tf.reduce_mean(x, 0))
输出结果:[1.5, 1.5]
print(tf.reduce_mean(x, 1))
输出结果:[1., 1.]

⑥tf.argmax(x,axis)函数表示返回指定维度 axis 下,参数 x 中最大值索引号。
例如:
在 tf.argmax([1,0,0],1)函数中,axis 为 1,参数 x 为[1,0,0],表示在参数 x 的第一个维度取最大值对应的索引号,故返回 0。 ⑦os.path.join()函数表示把参数字符串按照路径命名规则拼接。

例如:
import os
os.path.join(’/hello/’,‘good/boy/’,‘doiido’)
输出结果:’/hello/good/boy/doiido’

⑧字符串.split( )函数表示按照指定“拆分符”对字符串拆分,返回拆分列表。
例如:
‘./model/mnist_model-1001’.split(’/’)[-1].split(’-’)[-1]
在该例子中,共进行两次拆分。第一个拆分符为‘/’,返回拆分列表,并提取
列表中索引为-1 的元素即倒数第一个元素;第二个拆分符为‘-’,返回拆分列
表,并提取列表中索引为-1 的元素即倒数第一个元素,故函数返回值为1001。

⑨tf.Graph( ).as_default( )函数表示将当前图设置成为默认图,并返回一
个上下文管理器。该函数一般与 with 关键字搭配使用,应用于将已经定义好的神经网络在计算图中复现。

例如:

with tf.Graph().as_default() as g,表示将在 Graph()内定义的节点加入到
计算图 g 中。
√神经网络模型的保存 在反向传播过程中,一般会间隔一定轮数保存一次神经网络模型,并产生三个文件(保存当前图结构的.meta 文件、保存当前参数名的.index 文件、保存当前参数的.data 文件),在 Tensorflow 中如下表示:

saver = tf.train.Saver() 
with tf.Session() as sess: 
   for i in range(STEPS): 
     if i % 轮数 == 0: 
         saver.save(sess, os.path.join(MODEL_SAVE_PATH, 
MODEL_NAME), global_step=global_step)
其中,tf.train.Saver()用来实例化 saver 对象。上述代码表示,神经网络每循环规定的轮数,将神经网络模型中所有的参数等信息保存到指定的路径中,并在存放网络模型的文件夹名称中注明保存模型时的训练轮数。

√神经网络模型的加载
在测试网络效果时,需要将训练好的神经网络模型加载,在 Tensorflow 中这 样表示:

with tf.Session() as sess: 
 ckpt = tf.train.get_checkpoint_state(存储路径) 
 if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path)

在 with 结构中进行加载保存的神经网络模型,若 ckpt 和保存的模型在指定路径中存在,则将保存的神经网络模型加载到当前会话中。

√加载模型中参数的滑动平均值
在保存模型时,若模型中采用滑动平均,则参数的滑动平均值会保存在相应文件中。通过实例化 saver 对象,实现参数滑动平均值的加载,在 Tensorflow 中如下表示:

ema = tf.train.ExponentialMovingAverage(滑动平均基数)
ema_restore = ema.variables_to_restore() 
saver = tf.train.Saver(ema_restore)

√神经网络模型准确率评估方法
在网络评估时,一般通过计算在一组数据上的识别准确率,评估神经网络的效 果。在 Tensorflow 中这样表示:

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

在上述中,y 表示在一组数据(即 batch_size 个数据)上神经网络模型的预测结果,y 的形状为[batch_size,10],每一行表示一张图片的识别结果。通过tf.argmax()函数取出每张图片对应向量中最大值元素对应的索引值,组成长度为输入数据 batch_size 个的一维数组。通过 tf.equal()函数判断预测结果张量和实际标签张量的每个维度是否相等,若相等则返回 True,不相等则返回 False。通 过 tf.cast() 函数将 得到的 布 尔 型 数 值 转 化 为 实 数 型 , 再通过tf.reduce_mean()函数求平均值,最终得到神经网络模型在本组数据上的准确率。

神经网络八股包括前向传播过程、反向传播过程、反向传播过程中用到的正则化、指数衰减学习率、滑动平均方法的设置、以及测试模块。

√前向传播过程(forward.py)

前向传播过程完成神经网络的搭建,结构如下:

def forward(x, regularizer):
w= 
b= 
y= 
return y
def get_weight(shape, regularizer):
def get_bias(shape):

前向传播过程中,需要定义神经网络中的参数 w 和偏置 b,定义由输入到输出的网络结构。通过定义函数 get_weight()实现对参数 w 的设置,包括参数 w 的形状和是否正则化的标志。同样,通过定义函数 get_bias()实现对偏置 b 的设置。

√反向传播过程(backword.py)

反向传播过程完成网络参数的训练,结构如下:

def backward( mnist ): 
x = tf.placeholder(dtype, shape ) 
y_ = tf.placeholder(dtype, shape ) #定义前向传播函数 
y = forward( ) 
global_step = 
loss = 
train_step = tf.train.GradientDescentOptimizer(learning_rate). 
minimize(loss, global_step=global_step) #实例化 saver 对象 
saver = tf.train.Saver() 
with tf.Session() as sess: 
 #初始化所有模型参数 
tf.initialize_all_variables().run() #训练模型 for i in range(STEPS): sess.run(train_step, feed_dict={x: , y_: }) 
 if i % 轮数 == 0: print 
 saver.save( )

反向传播过程中,用 tf.placeholder(dtype, shape)函数实现训练样本 x 和样
本标签 y_占位,函数参数 dtype 表示数据的类型,shape 表示数据的形状;y 表示定义的前向传播函数 forward;loss 表示定义的损失函数,一般为预测值与样本标签的交叉熵(或均方误差)与正则化损失之和;train_step 表示利用优化算法对模型参数进行优化,常 用 优 化 算 法 GradientDescentOptimizer 、AdamOptimizer、MomentumOptimizer 算法,在上述代码中使用的 GradientDescentOptimizer 优化算法。接着实例化 saver 对象,其中利用 tf.initialize_all_variables().run()函数实例化所有参数模型,利用 sess.run( )函数实现模型的训练优化过程,并每间隔一定轮数保存一次模型。

√正则化、指数衰减学习率、滑动平均方法的设置
①正则化项 regularization 当在前向传播过程中即 forward.py 文件中,设置正则化参数 regularization 为 1 时,则表明在反向传播过程中优化模型参数时,需要在损失函数中加入正则化项。

结构如下:

首先,需要在前向传播过程即 forward.py 文件中加入

if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) 

其次,需要在反向传播过程即 backword.py 文件中加入

ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, 
labels=tf.argmax(y_, 1)) 
cem = tf.reduce_mean(ce) 
loss = cem + tf.add_n(tf.get_collection('losses')) 

其中,tf.nn.sparse_softmax_cross_entropy_with_logits()表示 softmax()函
数与交叉熵一起使用。

②指数衰减学习率

在训练模型时,使用指数衰减学习率可以使模型在训练的前期快速收敛接近较优解,又可以保证模型在训练后期不会有太大波动。运用指数衰减学习率,需要在反向传播过程即 backword.py 文件中加入:

learning_rate = tf.train.exponential_decay( 
LEARNING_RATE_BASE, global_step, LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True)

③滑动平均

在模型训练时引入滑动平均可以使模型在测试数据上表现的更加健壮。
需要在反向传播过程即 backword.py 文件中加入:

ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, 
global_step) 
ema_op = ema.apply(tf.trainable_variables()) 
with tf.control_dependencies([train_step, ema_op]): 
 train_op = tf.no_op(name='train')

√测试过程(test.py)

当神经网络模型训练完成后,便可用于测试数据集,验证神经网络的性能。结构
如下:
首先,制定模型测试函数 test()

def test( mnist ):
with tf.Graph( ).as_default( ) as g: #给 x y_占位 
 x = tf.placeholder(dtype,shape) 
 y_ = tf.placeholder(dtype,shape) 9
#前向传播得到预测结果 y y = mnist_forward.forward(x, None) #前向传播得到 y #实例化可还原滑动平均的 saver 
ema = tf.train.ExponentialMovingAverage(滑动衰减率) 
 ema_restore = ema.variables_to_restore() 
 saver = tf.train.Saver(ema_restore) #计算正确率 
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_, 
1)) 
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, 
tf.float32)) 
while True: 
 with tf.Session() as sess:
 #加载训练好的模型 
ckpt = tf.train.get_checkpoint_state(存储路径) #如果已有 ckpt 模型则恢复 
 if ckpt and ckpt.model_checkpoint_path: 
 #恢复会话 
 saver.restore(sess, ckpt.model_checkpoint_path) 
 #恢复轮数
 global_ste = ckpt.model_checkpoint_path.split 
('/')[-1].split('-')[-1] 
 #计算准确率 
accuracy_score = sess.run(accuracy, feed_dict= 
 {x:测试数据, y_:测试数据标签 }) 
 # 打印提示 
print("After %s training step(s), test accuracy= 
%g" % (global_step, accuracy_score)) 
 #如果没有模型 else:
 print('No checkpoint file found') #模型不存在提示 
 return 
其次,制定 main()函数 
def main(): 
 #加载测试数据集 
mnist = input_data.read_data_sets("./data/", one_hot=True) #调用定义好的测试函数 test() 
10
 test(mnist)
if __name__ == '__main__': 
 main()

通过对测试数据的预测得到准确率,从而判断出训练出的神经网络模型的性能好坏。当准确率低时,可能原因有模型需要改进,或者是训练数据量太少导致过拟合。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪子私房菜

给小强一点爱心呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值