C4.5决策树及CART决策树

学习目标

  1. 了解信息增益率的计算公式
  2. 知道ID3 和 C4.5决策树的优缺点
  3.  了解基尼指数的计算公式
  4. 了解基尼指数对于不同特征的计算方式
  5. 了解回归决策树的构建原理

1. 信息增益率计算公式

  1. Gain_Ratio 表示信息增益率
  2. IV 表示分裂信息、内在信息
  3. 特征的信息增益 ➗ 内在信息
  4. 如果某个特征的特征值种类较多,则其内在信息值就越大。即:特征值种类越多,除以的系数就越大。
  5. 如果某个特征的特征值种类较小,则其内在信息值就越小。即:特征值种类越小,除以的系数就越小。

信息增益比本质: 是在信息增益的基础之上乘上一个惩罚参数。特征个数较多时,惩罚参数较小;特征个数较少时,惩罚参数较大。惩罚参数:数据集D以特征A作为随机变量的熵的倒数。

1.1信息增益率计算举例

特征1的信息增益率:

  1. 信息增益:0.5408520829727552
  2. 分裂信息:-4/6*math.log(4/6, 2) -2/6*math.log(2/6, 2)=0.9182958340544896
  3. 信息增益率:信息增益/分裂信息=0.5408520829727552/0.9182958340544896=0.5889736868180786

特征2的信息增益率:

  1. 信息增益:1
  2. 分裂信息:-1/6*math.log(1/6, 2) * 6=2.584962500721156
  3. 信息增益率:信息增益/信息熵=1/2.584962500721156=0.38685280723454163

由计算结果可见,特征1的信息增益率大于特征2的信息增益率,根据信息增益率,我们应该选择特征1作为分裂特征

1.2. ID3和C4.5对比

  • ID3算法缺点
  • ID3算法不能处理具有连续值的属性
  • ID3算法不能处理属性具有缺失值的样本
  • 算法会生成很深的树,容易产生过拟合现象
  • 算法一般会优先选择有较多属性值的特征,因为属性值多的特征会有相对较大的信息增益,但这里的属性并不一定是最优的

  • C4.5算法的核心思想是ID3算法,对ID3算法进行了相应的改进。

  • C4.5使用的是信息增益比来选择特征,克服了ID3的不足。
  • 可以处理离散型描述属性,也可以处理连续数值型属性
  • 能处理不完整数据
  • C4.5算法优缺点
  • 优点:分类规则利于理解,准确率高
  • 缺点
    • 在构造过程中,需要对数据集进行多次的顺序扫描和排序,导致算法的低效
    • C4.5只适合于能够驻留内存的数据集,当数据集非常大时,程序无法运行
  • 无论是ID3还是C4.5最好在小数据集上使用,当特征取值很多时最好使用C4.5算法

4. Cart树简介

Cart模型是一种决策树模型,它即可以用于分类,也可以用于回归,其学习算法分为下面两步:

(1)决策树生成:用训练数据生成决策树,生成树尽可能大

(2)决策树剪枝:基于损失函数最小化的剪枝,用验证数据对生成的数据进行剪枝。

分类和回归树模型采用不同的最优化策略。Cart回归树使用平方误差最小化策略,Cart分类生成树采用的基尼指数最小化策略。

Scikit-learn中有两类决策树,他们均采用优化的Cart决策树算法。一个是DecisionTreeClassifier一个是DecisionTreeRegressor回归。

5. 基尼指数计算公式

 

  1. 信息增益(ID3)、信息增益率值越大(C4.5),则说明优先选择该特征。

  2. 基尼指数值越小(cart),则说明优先选择该特征。

6. Cart分类树原理

如果目标变量是离散变量,则是classfication Tree分类树。

分类树是使用树结构算法将数据分成离散类的方法。

(1)分类树两个关键点:

将训练样本进行递归地划分自变量空间进行建树‚用验证数据进行剪枝。

(2)对于离散变量X(x1…xn)处理:

分别取X变量各值的不同组合,将其分到树的左枝或右枝,并对不同组合而产生的树,进行评判,找出最佳组合。如果只有两个取值,直接根据这两个值就可以划分树。取值多于两个的情况就复杂一些了,如变量年纪,其值有“少年”、“中年”、“老年”,则分别生产{少年,中年}和{老年},{少年、老年}和{中年},{中年,老年}和{少年},这三种组合,最后评判对目标区分最佳的组合。因为CART二分的特性,当训练数据具有两个以上的类别,CART需考虑将目标类别合并成两个超类别,这个过程称为双化。这里可以说一个公式,n个属性,可以分出(2^n-2)/2种情况。

 💡💡我们知道,决策树算法对训练集很容易过拟合,导致泛化能力很差,为解决此问题,需要对CART树进行剪枝。CART剪枝算法从“完全生长”的决策树的底端剪去一些子树,使决策树变小,从而能够对未知数据有更准确的预测,也就是说CART使用的是后剪枝法。一般分为两步:先生成决策树,产生所有可能的剪枝后的CART树,然后使用交叉验证来检验各种剪枝的效果,最后选择泛化能力好的剪枝策略

7. 回归决策树构建原理

CART 回归树和 CART 分类树的不同之处在于:

  1. CART 分类树预测输出的是一个离散值,CART 回归树预测输出的是一个连续值。
  2. CART 分类树使用基尼指数作为划分、构建树的依据,CART 回归树使用平方损失。
  3. 分类树使用叶子节点里出现更多次数的类别作为预测类别,回归树则采用叶子节点里均值作为预测输出

CART 回归树构建:

\operatorname{Loss}(y, f(x))=(f(x)-y)^{2}

例子:

假设:数据集只有 1 个特征 x, 目标值值为 y,如下图所示:

x12345678910
y5.565.75.916.46.87.058.98.799.05

由于只有 1 个特征,所以只需要选择该特征的最优划分点,并不需要计算其他特征。

  1. 先将特征 x 的值排序,并取相邻元素均值作为待划分点
  2. 计算每一个划分点的平方损失,例如:1.5 的平方损失计算过程为:
  3. R1 为 小于 1.5 的样本个数,样本数量为:1,其输出值为:5.56

    $R_1 =5.56$

    R2 为 大于 1.5 的样本个数,样本数量为:9 ,其输出值为:

    $R_2=(5.7+5.91+6.4+6.8+7.05+8.9+8.7+9+9.05) / 9=7.50$

    该划分点的平方损失:

    以此方式计算 2.5、3.5... 等划分点的平方损失,结果如下所示:

s1.52.53.54.55.56.57.58.59.5
m(s)15.7212.078.365.783.911.938.0111.7315.74

   4. 当划分点 s=6.5 时,m(s) 最小。因此,第一个划分变量:特征为 X, 切分点为 6.5,即:j=x,      s=6.5

依此类推,分别对每一个节点进行上面的几个步骤 

CART 回归树构建过程如下:

  1. 选择第一个特征,将该特征的值进行排序,取相邻点计算均值作为待划分点

  2. 根据所有划分点,将数据集分成两部分:R1、R2

  3. R1 和 R2 两部分的平方损失相加作为该切分点平方损失

  4. 取最小的平方损失的划分点,作为当前特征的划分点

  5. 以此计算其他特征的最优划分点、以及该划分点对应的损失值

  6. 在所有的特征的划分点中,选择出最小平方损失的划分点,作为当前树的分裂点

  1. 回归决策树使用平方损失作为分裂增益计算指标

  2. 回归决策树是二叉树

下章我们具体学习剪枝以及带入案例帮大家更好的理解 

  • 37
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 16
    评论
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值