pytorch 反卷积

22 篇文章 1 订阅
4 篇文章 0 订阅

1. condtranspose2d

import torch
from torch import nn
from torch.nn import init
from torch.autograd import Variable
import torchvision

dconv = nn.ConvTranspose2d(in_channels=1, out_channels= 1,  kernel_size=4, stride=1, padding=0,output_padding=0, bias= False)
init.constant(dconv.weight, 1)
print(dconv.weight)
#
input1 = Variable(torch.ones(1, 1, 3, 3))
print(input1)
print(dconv(input1))

这里的当p=0时,p=1时会补0,p=2不补

2. pixel shuffle

先通道扩张,再reshape

参考链接:1. https://blog.csdn.net/g11d111/article/details/82855946 介绍了子像素卷积

2. http://www.mamicode.com/info-detail-2294256.html 介绍了pytorch文档里的反卷积过程

3. https://www.cnblogs.com/kk17/p/10111768.html 介绍了验证方法

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值