“傻瓜”学计量——主成分分析法PCA(原理+实操)

提纲:

1.PCA原理

2.视频推荐:PCA原理     spass操作      stata操作+matlab实操

1.背景

在一些领域中,需要对大量数据进行观测。但是可能会带来变量之间具有相关性、分别对每个指标分析带来的偏误等问题。因此,要寻找一个合理的方法,在减少需要分析的直白的同时,尽量减少原指标包含的信息缺失。通常做法是对有关联性的变量进行合并,这样就可以用较少的综合指标分别代表存在于各个变量中的各类信息。常用的方法有:主成分分析法、因子分析法。

2.PCA原理详解——数据降维

降维是对高纬度特征数据预处理,去除噪声和不重要的特征,保留下最重要的一些特征的方法。

降维算法主要有:奇异值分解(SVD)奇异值分解(SVD)、主成分分析(PCA)、因子分析(FA)、独立成分分析(ICA)。

PCA(Principal Component Analysis),即主成分分析方法。主要思想是将n维特征映射到k维上,这k维是全新的正交特征,也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。

3.推荐视频

3.1.PCA原理

 

用最直观的方式告诉你:什么是主成分分析PCA_哔哩哔哩_bilibili

3.2.PCA spass操作

30分钟掌握主成分分析--SPSS实战操作_哔哩哔哩_bilibili

 主成分操作步骤(实践版)

1、为消除量纲的影响,先对数据进行标准化处理;
2、计算相关系数:一般认为各变量之间的相关系数大于0.3较好;
3、KMO检验和Barlett(巴特利)检验:
(1)KMO取样适切性量数≥0.6较为适宜
(2)sig也即显著性一般小于0.05较为适宜;
4、计算特征值和特征向量:提取特征值大于1且方差贡献率累计达到85%左右

的主成分;

5、识别主成分的贡献率和累计贡献率;

6、计算各个主成分的得分:F1=wnX1+wi2X2+ ... +wmXm

6、计算各个主成分的得分:F1=wnX1+wi2X2+ ... +wimXn

,表示主成分中各个变量的权重,\thetaj为成分矩阵中每个变量对应的

系数,而√\lambdai第i个主成分对应的特征值的开根值;

7、计算综合得分:F=α1F1+α2F2+ ... +αnFn

α,表示第i个主成分的方差百分比

3.3.PCA stata操作+matlab实操

【最全】主成分分析法stata操作讲解+主成分分析法matlab操作讲解+主成分分析法(PCA)理论部分讲解_哔哩哔哩_bilibili

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值