乘法逆元 求组合数取模 (模为质数)

为什么求组合数取模,可以用 乘法逆元来做。

C(n,r) = \frac{n!}{r!*(n-r)!}

所以求 组合数取模 就是求  C(n,r) % mod % mod.

对于正整数 a 和 p,如果有 ax\equiv 1 (mod p),那么把这个同余方程中 x 的最小正整数解叫做 a 模 p 的逆元。

即如果 a % p = 1 % p = 1, 那么x的最小正整数解就是 a 的逆元。

 可以得到   \frac{a}{b} % M = (a *b ^{m-2}) % M;    //费马小定理

所以 C(n,r) % M = (n!) * ( r!^{M-2} % M ) * (n-r)! ^{M-2} % M.

typedef long long LL;
const LL maxn(1000005), mod(1e9 + 7);
LL Jc[maxn];
void calJc()    //求maxn以内的数的阶乘
{
    Jc[0] = Jc[1] = 1;
    for(LL i = 2; i < maxn; i++)
        Jc[i] = Jc[i - 1] * i % mod;
}
/*
//拓展欧几里得算法求逆元
void exgcd(LL a, LL b, LL &x, LL &y)    //拓展欧几里得算法
{
    if(!b) x = 1, y = 0;
    else
    {
        exgcd(b, a % b, y, x);
        y -= x * (a / b);
    }
}
LL niYuan(LL a, LL b)   //求a对b取模的逆元
{
    LL x, y;
    exgcd(a, b, x, y);
    return (x + b) % b;
}
*/
//费马小定理求逆元
LL pow(LL a, LL n, LL p)    //快速幂 a^n % p
{
    LL ans = 1;
    while(n)
    {
        if(n & 1) ans = ans * a % p;
        a = a * a % p;
        n >>= 1;
    }
    return ans;
}
LL niYuan(LL a, LL b)   //费马小定理求逆元
{
    return pow(a, b - 2, b);
}
LL C(LL a, LL b)    //计算C(a, b)
{
    return Jc[a] * niYuan(Jc[b], mod) % mod
        * niYuan(Jc[a - b], mod) % mod;
}

 以上即为逆元求取组合数的方法,无论使用拓展欧几里得还是费马小定理,一开始求取Jc数组是的复杂度是 O(n),拓展欧几里得算法和费马小定理的复杂度均为 O(log(mod)),如果要求取m次组合数,则总的时间复杂度为 O(mn log(mod)). 

转载自:https://www.zybuluo.com/ArrowLLL/note/713749

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值