codeforces189 A. Cut Ribbon【完全背包】

针对CutRibbon问题,介绍了一种使用完全背包算法求解的方法。该问题要求将长度为n的丝带切割成尽可能多的片段,每段长度必须为a、b或c之一。通过初始化动态规划数组并迭代更新,最终输出最大片段数量。

A. Cut Ribbon

time limit per test1 second
memory limit per test256 megabytes

Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:

After the cutting each ribbon piece should have length a, b or c.
After the cutting the number of ribbon pieces should be maximum.
Help Polycarpus and find the number of ribbon pieces after the required cutting.

Input

The first line contains four space-separated integers n, a, b and c (1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers a, b and c can coincide.

Output

Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.

Examples

input

5 5 3 2

output

2

input

7 5 5 2

output

2

Note

In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3.

In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.

题意: 给你n单位长度的尺子吧,让你尽可能的分多段,使得分得的长度为a或b或c,问你最多能分多少段

题意: 这题不能贪心,是个完全背包的裸题,我们一开始除了0之外都赋值为负无穷,然后进行完全背包即可

参考代码

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 7,INF = 2000000000;
typedef long long ll;

int w[4];
int dp[maxn];


int main() {
    int n;cin>>n;
    for (int i = 0; i < 3; i++) cin>>w[i];
    for (int i = 1; i < maxn; i++) dp[i] = -INF;
    for (int i = 0;i < 3; i++) {
        for (int j = w[i]; j <= n; j++) {
            dp[j] = max(dp[j],dp[j - w[i]] + 1);
        }

    }
    cout<<dp[n]<<endl;
    return 0;
}

• 如有错误或遗漏,请私聊下UP,thx

### Codeforces 1732A Bestie 题目解析 对于给定的整数数组 \(a\) 和查询次数 \(q\),每次查询给出两个索引 \(l, r\),需要计算子数组 \([l,r]\) 的最大公约数(GCD)。如果 GCD 结果为 1,则返回 "YES";否则返回 "NO"[^4]。 #### 解决方案概述 为了高效解决这个问题,可以预先处理数据以便快速响应多个查询。具体方法如下: - **预处理阶段**:构建辅助结构来存储每一对可能区间的 GCD 值。 - **查询阶段**:利用已有的辅助结构,在常量时间内完成每个查询。 然而,考虑到内存限制以及效率问题,直接保存所有区间的结果并不现实。因此采用更优化的方法——稀疏表(Sparse Table),它允许 O(1) 时间内求任意连续子序列的最大值/最小值/GCD等问题,并且支持静态RMQ(Range Minimum Query)/RANGE_GCD等操作。 #### 实现细节 ##### 构建稀疏表 通过动态规划的方式填充二维表格 `st`,其中 `st[i][j]` 表示从位置 i 开始长度为 \(2^j\) 的子串的最大公约数值。初始化时只需考虑单元素情况即 j=0 的情形,之后逐步扩展至更大的范围直到覆盖整个输入序列。 ```cpp const int MAXN = 2e5 + 5; int st[MAXN][20]; // Sparse table for storing precomputed results. vector<int> nums; void build_sparse_table() { memset(st,-1,sizeof(st)); // Initialize the base case where interval length is one element only. for(int i = 0 ;i < nums.size(); ++i){ st[i][0]=nums[i]; } // Fill up sparse table using previously computed values. for (int j = 1;(1 << j)<=nums.size();++j){ for (int i = 0;i+(1<<j)-1<nums.size();++i){ if(i==0 || st[i][j-1]!=-1 && st[i+(1<<(j-1))][j-1]!=-1) st[i][j]=__gcd(st[i][j-1],st[i+(1<<(j-1))][j-1]); } } } ``` ##### 处理查询请求 当接收到具体的 l 和 r 参数后,可以通过查找对应的 log₂(r-l+1) 来定位合适的跳跃步长 k ,进而组合得到最终答案。 ```cpp string query(int L,int R){ int K=(int)(log2(R-L+1)); return __gcd(st[L][K],st[R-(1<<K)+1][K])==1?"YES":"NO"; } ``` 这种方法能在较短时间内完成大量查询任务的同时保持较低的空间开销,非常适合本题设定下的性能需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值