GAN对抗生成网络模型详解及代码复现

基本概念

生成对抗网络(Generative Adversarial Networks, GAN)是由Ian Goodfellow等人于2014年提出的开创性深度学习模型。GAN的独特之处在于其 对抗性训练方式 ,通过两个神经网络的相互竞争来生成高质量的新数据。

GAN由两个核心组件构成:

  1. 生成器(Generator) :负责从随机噪声中创造出与真实数据相似的样本。生成器的目标是“欺骗”判别器,使其无法区分生成的数据和真实数据。

  2. 判别器(Discriminator) :负责区分真实数据与生成器生成的伪造数据。判别器通过提高自身判别能力来减少被生成器欺骗的可能性。

GAN的训练过程可以比喻为一场博弈游戏:

  • 生成器试图创造最逼真的样本以迷惑判别器

  • 判别器则努力提高辨别能力以识破生成器的伪装

这种 对抗性训练 过程不断推动双方提升能力,最终达到一个动态平衡状态,在此状态下生成器能够产生高质量的、与真实数据难以区别的样本。

GAN的核心思想是通过 最小化判别器的损失函数最大化生成器的损失函数 来实现对抗训练。这种独特的训练方式使得GAN能够在复杂的高维数据空间中学习到数据的本质特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值