conv2former模型详解及代码复现

模型背景

在Conv2Former模型提出之前,视觉识别领域的研究主要集中在两个方向:

  1. 传统卷积神经网络(ConvNets)

  2. 新兴的视觉Transformer(ViTs)

ConvNets通过堆叠基本模块和采用金字塔结构取得了显著进展,但往往忽略了全局上下文信息的显式建模。ViTs则通过自注意力机制有效捕捉全局依赖关系,在多个视觉任务中展现出优异性能。然而,ViTs在处理高分辨率图像时面临计算成本过高的问题。

这些局限性促使研究者寻求一种结合两者优势的新型网络结构,为Conv2Former的提出奠定了基础。

创新点

Conv2Former模型在多个方面展现出创新性,成功融合了卷积神经网络(ConvNets)和视觉Transformer(ViTs)的优势。这些创新不仅提高了模型的性能,还解决了传统方法在处理高分辨率图像时面临的计算成本问题。

Conv2Former的核心创新点主要包括以下几个方面:

  1. 卷积调制模块

    • 原理 :通过深度卷积和Hadamard乘积操作模拟Transformer的自注意力机制

    • 优势</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值