知识图谱变换器网络(KGTN)详解及代码复现

定义及原理

在知识图谱表示学习的背景下,KGTN(Knowledge Graph Transfer Network)作为一种创新的方法,旨在 将图神经网络(GNN)与知识图谱嵌入技术深度融合 。这种融合不仅能够有效捕捉知识图谱中的复杂关系结构,还能将实体表示学习提升到一个新的水平。

KGTN的核心原理建立在 图卷积网络(GCN) 的基础之上。GCN是一种专门设计用于处理图结构数据的神经网络,它通过 聚合邻居节点的信息来更新每个节点的表示 。在KGTN中,这一过程被巧妙地应用于知识图谱中的实体表示学习。

具体而言,KGTN采用了 变换网络(Transfer Network) 作为其核心组件。变换网络的主要作用是 在不同的知识图谱之间传递信息 ,从而实现跨知识图谱的实体表示学习。这种信息传递机制使得KGTN能够利用多个知识图谱中的丰富信息,进一步提高实体表示的质量。

KGTN的数学模型可以用以下公式表示:

𝑣𝑖′ = 𝑓(𝑣𝑖, 𝑁(𝑣𝑖))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值