定义及原理
在知识图谱表示学习的背景下,KGTN(Knowledge Graph Transfer Network)作为一种创新的方法,旨在 将图神经网络(GNN)与知识图谱嵌入技术深度融合 。这种融合不仅能够有效捕捉知识图谱中的复杂关系结构,还能将实体表示学习提升到一个新的水平。
KGTN的核心原理建立在 图卷积网络(GCN) 的基础之上。GCN是一种专门设计用于处理图结构数据的神经网络,它通过 聚合邻居节点的信息来更新每个节点的表示 。在KGTN中,这一过程被巧妙地应用于知识图谱中的实体表示学习。
具体而言,KGTN采用了 变换网络(Transfer Network) 作为其核心组件。变换网络的主要作用是 在不同的知识图谱之间传递信息 ,从而实现跨知识图谱的实体表示学习。这种信息传递机制使得KGTN能够利用多个知识图谱中的丰富信息,进一步提高实体表示的质量。
KGTN的数学模型可以用以下公式表示:
𝑣𝑖′ = 𝑓(𝑣𝑖, 𝑁(𝑣𝑖))