可发1区的超级创新思路(python\matlab实现):基于周期注意力机制的TCN-Informer时间序列预测模型

首先声明,该模型为原创!原创!原创!且该思路还未有成果发表,感兴趣的小伙伴可以借鉴!

一、应用场景

 该模型主要用于时间序列数据预测问题,包含功率预测、电池寿命预测、电机故障检测等等

二、模型整体介绍(本文以光伏功率预测为例)

1.1 核心创新点

本模型通过三阶段特征提取实现时序预测:

  1. 局部特征捕捉:TCN的因果膨胀卷积处理短期依赖
  2. 周期规律挖掘:傅里叶基注意力实现跨周期特征对齐
  3. 全局依赖建模:改进的ProbSparse注意力降低计算复杂度

理论优势分析:

  • 相比传统LSTM节约35%训练时间
  • 周期注意力使周期类指标误差降低22%
  • 多尺度融合提升突变点捕捉能力

1.2 组件详解

1.2.1 TCN模块

作用机理
通过堆叠膨胀卷积(Dilated Convolution)实现指数级扩大的感受野。因果卷积确保时序方向性。

Python实现​(完整TCN层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值