清风AI
这个作者很懒,什么都没留下…
展开
-
可发1区的超级创新思路:TriFusion-Net (SpatioTemporal-Causal Transformer-BiDRSN)模型及代码详解(可用于时间序列数据预测)
TriFusion-Net 是针对时间序列预测任务设计的创新性深度学习模型,其核心创新点在于多模态特征融合架构与自适应超参数优化机制的深度结合。该模型在IEEE PES光伏预测竞赛数据集上实现了19.7%的RMSE降低,特别在辐照度剧烈波动场景下预测精度提升显著。TriFusion-Net通过三支路动态融合架构,实现了时空特征、时序模式和噪声抑制的协同优化。轻量化设计:采用神经网络架构搜索(NAS)优化计算路径跨气候迁移:结合元学习实现模型快速适配不同地理区域数字孪生集成。原创 2025-03-20 22:40:54 · 206 阅读 · 0 评论 -
基于TCN-BiLSTM-Attention的序列数据预测(功率预测、故障诊断)模型及代码详解
在TCN-BiLSTM-Attention结构中,各层之间的协同工作构成了一个强大的时间序列预测模型。这种组合不仅充分利用了每种模型的优势,还通过精心设计的连接方式最大化了模型的性能。功能:提取时间序列中的局部特征输入:原始时间序列数据输出:包含局部特征的特征向量优势:能够有效捕捉时间序列中的周期性和趋势功能:处理TCN输出的特征向量,捕捉长期依赖关系输入:TCN输出的特征向量输出:包含长期依赖信息的特征表示优势:通过正向和反向传播,能够同时捕捉时间序列中的正向和反向信息。原创 2025-03-19 23:42:15 · 342 阅读 · 0 评论 -
基于多头注意机制的多尺度特征融合的GCN的序列数据(功率预测、故障诊断)模型及代码详解
在基于多头注意机制的多尺度特征融合的GCN的序列数据预测模型及代码详解原创 2025-03-18 22:23:31 · 244 阅读 · 0 评论 -
超火的去归一化模型Transformers without Normalization详解及代码复现
在深度学习领域,Transformer架构的创新一直是研究热点。本文介绍的模型是一种基于Transformer架构的创新变体,原创 2025-03-18 20:39:46 · 201 阅读 · 0 评论 -
增强深度学习的残差Kolmogorov-Arnold网络(RKAN)详解与PyTorch实现
残差Kolmogorov-Arnold网络(RKAN),该模型通过将Chebyshev多项式参数化的KAN卷积作为残差组件,显著提升了传统CNN的特征表达能力。我们将深入解析其核心算法,并提供完整的PyTorch实现代码。原创 2025-03-13 10:36:11 · 168 阅读 · 0 评论 -
什么是物理信息神经网络PINN
物理信息神经网络(PINN)是一种创新的机器学习方法,将深度学习与物理知识相结合,旨在解决偏微分方程(PDE)相关问题。PINN的核心思想是在神经网络的训练过程中引入物理定律,从而提高模型的泛化能力和预测精度。原创 2025-03-13 08:54:58 · 141 阅读 · 0 评论 -
LKM-UNet模型详解及代码复现
这种整体框架的设计使得LKM-UNet能够在保持计算效率的同时,有效捕捉医学图像中的长程空间依赖性。Mamba Block的这种特性使得LKM-UNet模型能够有效处理医学图像等复杂的序列数据,为医学图像分割任务提供了强大的特征表示能力。通过精心调整超参数和采用先进的优化算法,LKM-UNet模型能够在有限的数据条件下实现优异的分割效果,为医学图像分析领域提供了一种强大的工具。这些策略不仅考虑了医学图像分割任务的特点,还充分利用了Mamba架构的优势,使得模型能够在有限的数据条件下实现优异的分割效果。原创 2025-03-11 15:43:58 · 275 阅读 · 0 评论 -
H-vmunet: High-order Vision Mamba UNet for Medical Image Segmentation模型详解及代码复现
在医学图像分割领域,基于卷积神经网络(CNN)和视觉Transformer(ViT)的变体模型已得到广泛应用。然而,CNN在处理长序列信息时存在局限性,而ViT对局部特征信息的敏感度较低。状态空间模型(SSMs)的出现为医学图像分割带来了新的可能性,特别是2D选择扫描(SS2D)技术。SS2D通过逐步减少操作中的冗余信息,提高了模型的适应性和效率。医学图像分割的主要任务包括肝脏和肝脏肿瘤分割、脑和脑肿瘤分割、视盘分割、细胞分割、肺分割和肺结节检测等。原创 2025-03-11 15:41:06 · 40 阅读 · 0 评论 -
基于CNN-BIGRU-Attention模型的功率预测(模型详解及代码复现)
基于CNN - BiGRU - Attention模型的功率预测模型是一种融合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的深度学习架构。这种混合模型旨在充分利用CNN的局部特征提取能力、BiGRU的长序列处理能力以及Attention机制的关键特征突出能力,从而提高功率预测的准确性和可靠性。模型的整体架构主要包括以下几个关键组件:输入层 :设计的输入特征向量维度为6×101,包括96个时刻的电力负荷数据以及相对应的5种天气数据(最高温度、最低温度、平均温度、相原创 2025-03-09 16:05:52 · 698 阅读 · 0 评论 -
YOLOv10改进之MHAF(多分支辅助特征金字塔)
这些尺度适应性技术的应用不仅提高了YOLOv10的检测精度,还在一定程度上缓解了传统特征金字塔网络在处理不同尺度目标时的局限性。这些创新的设计不仅提高了MHAF-YOLOv10的检测精度,还在一定程度上缓解了传统特征金字塔网络在处理不同尺度目标时的局限性。通过这些精心设计的网络层配置,MHAF-YOLOv10在保持高效率的同时,能够有效处理各种尺度的目标,为目标检测任务提供了一个强大而灵活的解决方案。这些创新的网络层配置不仅提高了模型的性能,还为未来的目标检测研究提供了新的思路和方法。原创 2025-03-06 23:46:33 · 221 阅读 · 0 评论 -
YOLOv12改进之A2(区域注意力)
与其他先进模型相比,YOLOv12在保持高速推理的同时,实现了与最先进方法相当的精度表现,展示了A2架构在平衡速度和精度方面的优势。区域划分的主要目的是在保证一定感受野的同时,降低注意力计算的复杂度。在大规模模型(如YOLOv12-L和YOLOv12-X)中,R-ELAN有效解决了注意力机制带来的优化难题,使模型能够更好地收敛,并在保证性能的同时提升推理速度。这种资源消耗的降低不仅提高了模型的运行效率,还使得YOLOv12在资源受限的设备上部署成为可能,为实时目标检测技术的广泛应用开辟了新的可能性。原创 2025-03-06 23:42:57 · 253 阅读 · 0 评论 -
极性感知线性注意力机制详解及代码复现
线性投影通过将查询向量和键向量映射到低维空间,大大减少了所需的计算资源,使得模型能够处理更长的输入序列,同时保持较高的计算效率。线性投影的核心优势在于它能够显著降低计算复杂度。这种线性投影方法与极性分离技术相结合,使得极性感知线性注意力机制能够在保持计算效率的同时,提高模型的表达能力和泛化能力。通过这些创新的注意力计算方法,极性感知线性注意力机制能够在保持计算效率的同时,提高模型的表达能力和泛化能力。通过这些创新的极性分离技术,极性感知线性注意力机制能够在保持计算效率的同时,提高模型的表达能力和泛化能力。原创 2025-03-05 17:26:14 · 95 阅读 · 0 评论 -
FasterNET模型详解及代码复现
在FasterNET模型提出之前,深度学习领域已经出现了多种高效的卷积神经网络架构。其中,作为一种创新技术,通过仅使用输入特征图的部分通道来降低计算复杂度,同时保持模型性能。PConv的出现为FasterNET模型的设计奠定了基础,为构建更高效的神经网络提供了新思路。这种方法的核心思想是通过选择性地利用输入通道,在保持模型性能的同时显著降低计算复杂度,为后续FasterNET模型的开发奠定了基础。FasterNet模型的核心特点主要体现在其创新的卷积算子和在不同设备上的运行速度优势。原创 2025-03-03 12:00:00 · 119 阅读 · 0 评论 -
EdgeNext模型详解及代码复现
这种全面的训练方法不仅提高了模型的训练效率,还显著提升了模型在各种视觉任务中的性能表现,为移动视觉应用提供了强大而灵活的解决方案。通过精心调整学习率和动量参数,EdgeNeXt模型能够在保持较低计算复杂度的同时,实现高效的全局特征编码,为移动视觉应用提供强大而灵活的解决方案。在EdgeNeXt模型的训练过程中,研究人员采用了一系列精心设计的策略,以确保模型能够在保持较低计算复杂度的同时,实现高效的全局特征编码。这种全面的数据处理策略不仅提高了模型的训练效率,还显著提升了模型在各种视觉任务中的性能表现。原创 2025-03-02 21:28:01 · 154 阅读 · 0 评论 -
EMO模型详解及代码复现
EMO(Efficient Mobile Networks)是一种。原创 2025-03-02 21:24:14 · 102 阅读 · 0 评论 -
DCANet模型详解及代码复现
例如,在语义分割任务中,采用双注意力机制的模型在PASCAL VOC2012数据集上的平均交并比(mIoU)较传统方法提高了5.6%,在Cityscapes数据集上的mIoU提高了3.2%。例如,在语义分割任务中,采用双注意力机制的模型在PASCAL VOC2012数据集上的平均交并比(mIoU)较传统方法提高了5.6%,在Cityscapes数据集上的mIoU提高了3.2%。通过这些精心设计的信息流动方式,DCANet实现了注意力在整个网络中的有效传播和积累,大大提高了模型的表征能力和性能。原创 2025-02-28 22:27:12 · 424 阅读 · 0 评论 -
DCMNet一种用于目标检测的轻量级骨干结构模型详解及代码复现
通过精心设计的特征提取网络、创新的多尺度特征融合模块和高效的检测头结构,DCMNet在精度和效率之间取得了良好的平衡,为目标检测领域提供了一个优秀的解决方案。通过这些创新的推理策略,DCMNet能够在保持轻量化的同时,实现高效的目标检测,为资源受限的移动设备和嵌入式系统提供了强有力的支持。通过轻量化设计、多尺度特征融合、通道注意力机制、深度可分离卷积和改进的检测头结构,DCMNet在精度和效率之间取得了良好的平衡,为移动设备和嵌入式系统中的实时目标检测提供了强有力的支持。原创 2025-02-27 21:02:43 · 251 阅读 · 0 评论 -
GSConv2D模型详解及代码复现
实现方式:使用PyTorch的。原创 2025-02-27 15:19:27 · 120 阅读 · 0 评论 -
分享基于张量的跨特征多尺度注意力机制(Tensor-based Cross-feature Multi-scale Attention, TCMA)详解及代码复现
这种结构允许模型同时处理不同尺度的特征,从而提高计算效率。例如,在图像识别任务中,可以将TCMA的损失函数与自编码器相结合,利用自编码器学习到的特征表示来指导损失函数的优化过程,从而提高模型对图像特征的理解能力。例如,在图像识别任务中,可以将TCMA的特征融合与自编码器相结合,利用自编码器学习到的特征表示来指导特征融合过程,从而提高模型对图像特征的理解能力。例如,在图像识别任务中,可以将TCMA的尺度变换与自编码器相结合,利用自编码器学习到的特征表示来指导尺度变换过程,从而提高模型对图像特征的理解能力。原创 2025-02-23 16:01:17 · 38 阅读 · 0 评论 -
YOLO-HMC模型详解及代码分析
这是一种创新的基于概率的优化方法。YOLO-HMC算法作为YOLO系列的最新进展,继承了YOLO模型的单阶段检测优势,同时引入了创新的Hamiltonian Monte Carlo (HMC)机制,显著提升了目标检测性能。在构建YOLO-HMC模型时,开发人员采用了一系列先进的技术和模块,这些设计不仅提高了模型的性能,还显著提升了其在微小缺陷检测等复杂应用中的表现。通过在前端使用融合的倒置残差瓶颈和在后端采用倒置的残差瓶颈,YOLO-HMC能够在保持较高检测精度的同时,显著提高模型的推理速度。原创 2025-02-20 16:30:53 · 35 阅读 · 0 评论 -
YOLO-SK模型详解及代码复现
这些创新设计使得YOLO-SK模型能够更全面地捕捉目标的特征信息,从而提高小目标的检测精度和模型的整体性能。这种设计不仅提高了模型对多尺度目标的检测能力,还增强了模型的泛化性能,使得YOLO-SK在复杂场景下的目标检测任务中表现出色。这些研究成果为YOLO-SK模型的诞生奠定了基础,促使其在YOLOv5s的基础上进一步优化检测头和特征融合网络,以实现更高效、更准确的多尺度目标检测。SK注意力机制是YOLO-SK模型中的核心创新之一,它通过动态调整不同尺度特征的重要性,显著提高了模型对多尺度目标的检测能力。原创 2025-02-18 21:26:56 · 392 阅读 · 0 评论 -
TransCNN模型详解
通过这种分层计算的方式,TransCNN模型能够在保持CNN局部特征提取能力的同时,充分利用Transformer的全局依赖关系建模能力,为图像识别等任务提供了一种强大的新方法。通过这种分层计算的方式,TransCNN模型能够在保持CNN局部特征提取能力的同时,充分利用Transformer的全局依赖关系建模能力,为图像识别等任务提供了一种强大的新方法。通过这种分层计算的方式,H-MHSA模块能够在保持CNN局部特征提取能力的同时,充分利用Transformer的全局依赖关系建模能力。原创 2025-02-17 22:46:33 · 65 阅读 · 0 评论 -
GCT模型详解及代码复现
这种模块化的设计不仅简化了开发流程,还为未来的研究工作提供了便利,使得GCT能够作为一个“即插即用”的组件,在不同的视觉任务中发挥作用。这种模块化的设计不仅简化了开发流程,还为未来的研究工作提供了便利,使得GCT能够作为一个“即插即用”的组件,在不同的视觉任务中发挥作用。这种细致的工作大大提高了模型的可移植性,使得GCT能够在不同的开发环境中顺利运行。通过这三个步骤的有机结合,GCT实现了对通道间关系的有效建模,既考虑了通道间的竞争关系,又兼顾了它们的合作特性,为后续的视觉任务提供了更加丰富的特征表达。原创 2025-02-17 21:54:14 · 240 阅读 · 0 评论 -
轻量级的注意力网络(LANMSFF)模型详解及代码复现
通过精心设计的损失函数,LANMSFF模型能够更好地捕捉图像中的关键特征,提高预测的准确性和模型的泛化能力,从而在各种实际应用中展现出优异的性能。通过这些创新设计,LANMSFF模型能够在不同尺度和复杂度的任务中保持良好的性能,同时保持较低的模型复杂度,为实际应用提供了更广泛的可能性。通过将输入特征图沿着通道维度拆分为多个组,然后对每个组分别应用注意力机制,最后再将这些组的特征进行融合,模型能够更有效地捕捉不同尺度和层次的特征信息,从而提高模型的泛化能力。原创 2025-02-16 22:52:07 · 172 阅读 · 0 评论 -
频率自适应扩张卷积(FADC)详解及代码复现
在介绍频率自适应扩张卷积(FADC)之前,我们需要了解卷积神经网络(CNN)在处理复杂图像任务时面临的挑战。CNN的成功主要依赖于其多层结构和卷积层的设计,这些设计可以有效地捕捉图像的局部特征。然而,随着网络层数的增加,感受野的大小也随之增加,这可能导致一些问题,如计算资源的浪费和特征表示的不精确。为了解决这些问题,研究人员开始探索如何在保持计算效率的同时,提高CNN的特征表示能力。原创 2025-02-16 22:29:13 · 170 阅读 · 0 评论 -
知识图谱变换器网络(KGTN)详解及代码复现
例如,在一个包含多个类别(如电影、演员、导演等)的知识图谱中,KGTN能够自动学习到不同类别之间的关联,从而更好地捕捉实体之间的语义关系。这种方法不仅提高了实体表示的质量,还为知识图谱的各种应用(如推荐系统、问答系统等)提供了更强大的支持。通过这些创新,KGTN中的变换器网络能够更好地捕捉知识图谱中的复杂关系结构,为知识表示学习提供了强大的支持。通过这种方式,KGTN能够在信息传递过程中,自动学习知识图谱中不同关系的重要性,从而实现更精准的实体表示学习。来处理不同层次的知识图谱信息。原创 2025-02-08 13:35:56 · 42 阅读 · 0 评论 -
跳跃注意力模块(Skip Attention Module, SAM)详解及代码复现
跳跃注意力模块是一种将多跳上下文信息融入到注意力计算的每一层的方法。它通过分散注意力分数到整个网络,增加了每一层的感受野,从而能够捕捉输入中的复杂语义关系。原创 2025-02-05 21:45:09 · 126 阅读 · 0 评论 -
空间注意力模块(SAM)和时间注意力模块(TAM)详解及代码复现
注意力机制源于人类视觉系统的选择性注意能力,是深度学习领域的一项关键技术。它通过模拟人类视觉系统的选择性注意能力,使深度学习模型能够聚焦于图像中的关键信息。这种机制通过动态分配权重,突出重要特征,抑制无关信息,从而 提高图像识别的准确性和效率 。在神经网络中,注意力机制主要通过 Softmax函数 实现,它能够将输入特征映射到0到1之间的概率分布,从而实现特征的加权。在深度学习领域,空间注意力和时间注意力是两种重要的注意力机制。空间注意力机制 聚焦于图像的特定区域 ,通过学习不同区域的重要性来提高模型的感知原创 2025-02-05 19:23:41 · 554 阅读 · 0 评论 -
自适应细粒度通道注意力机制FCA详解及代码复现
例如,在处理包含不同大小目标的图像时,FCA可以根据目标的大小动态调整特征权重,从而提高模型的性能。例如,在处理包含不同大小目标的图像时,多层次特征融合可以同时捕捉大目标的整体结构和小目标的局部细节,从而提高模型的泛化能力。例如,在处理包含不同大小目标的图像时,多层次特征融合可以同时捕捉大目标的整体结构和小目标的局部细节,从而提高模型的泛化能力。通过这些创新的方法,FCA机制能够在处理局部信息时,同时考虑特征的空间分布和重要性差异,从而提高模型的性能。合理的参数设置不仅能够优化模型性能,还能提高计算效率。原创 2025-02-01 16:49:54 · 454 阅读 · 0 评论 -
TPA注意力机制详解及代码复现
例如,在处理4K tokens的长序列时,TPA注意力机制可以实现高达20倍的内存节省,同时保持良好的性能。,这种设计有助于模型学习到不同层次的时间模式。通过这种创新的注意力权重计算方法,TPA注意力机制能够更有效地捕捉时间序列中的复杂模式,同时保持较低的计算复杂度。TPA注意力机制采用了一种创新的方法来计算注意力权重,这种方法不仅能够捕捉复杂的时间模式,还能有效减少模型的内存需求。TPA注意力机制通过创新性的张量分解技术,在不牺牲性能的前提下大幅降低了模型的内存需求,为处理长序列数据提供了新的解决方案。原创 2025-01-29 16:37:03 · 359 阅读 · 0 评论 -
CNN-LSTM模型详解及代码复现
例如,在视频分类任务中,CNN层可以识别视频帧中的物体,而LSTM层则可以捕捉帧与帧之间的时间关系,从而更准确地判断视频的类别。这种局部连接和参数共享的机制使得CNN在处理图像等具有空间结构的数据时表现出色,同时也显著减少了模型的参数量,降低了计算复杂度。CNN通过卷积层和池化层的层层堆叠,能够逐步提取输入数据的高级特征,这种分层结构设计使得CNN在处理具有空间结构的数据时表现出色。通过精心设计的数据预处理流程,我们可以为CNN-LSTM模型提供高质量的输入数据,从而提高模型的性能和泛化能力。原创 2025-01-26 12:00:00 · 493 阅读 · 0 评论 -
双注意力模块DAB详解及代码复现
这种设计将不同尺度的互补空间-通道注意力统一到一个统一的块中,有效整合了局部模式、上下文关系和缩放动力学,从而提高了模型的分割能力。这种设计不仅减少了模型的复杂度,还提高了模型的性能,为资源受限环境中的应用提供了可能。这种两阶段方法将不同尺度的互补空间-通道注意力统一到一个统一的块中,有效整合了局部模式、上下文关系和缩放动力学,从而提高了模型的分割能力。这种两阶段方法将不同尺度的互补空间-通道注意力统一到一个统一的块中,有效整合了局部模式、上下文关系和缩放动力学,从而提高了模型的分割能力。原创 2025-01-25 12:00:00 · 218 阅读 · 0 评论 -
细节增强注意力模型DEAB详解及代码复现
通道特征增强机制通过生成特定于通道的空间重要性图,为这种特征融合提供了更准确的指导,有助于增强从浅层到深层的信息流,提高特征保持和梯度反向传播的效果。通过这种设计,DEConv能够有效捕捉图像中的局部细节信息,为后续的内容引导注意力机制提供更丰富的特征表示。:DEAB模型采用了一种基于CGA的混合融合方案,通过学习的空间权重来调制特征,自适应地将编码器部分的低级特征与相应的高级特征融合在一起。通过这种创新的特征融合策略,DEAB模型能够更好地利用不同层级的特征信息,从而提高模型在处理复杂视觉问题时的表现。原创 2025-01-24 12:00:00 · 213 阅读 · 0 评论 -
YOLOV8涨点技巧之细节增强注意力模块(DEAB)
YOLOv8 是目标检测领域的最新成果,以其速度和精度著称。然而,在处理小目标或复杂背景时,其性能仍有提升空间。细节增强注意力模块(DEAB)能有效捕捉图像细节信息,增强模型对关键特征的关注,从而提升检测精度。通过将 DEAB 模块融入 YOLOv8,模型能够更好地捕捉图像细节信息,提升目标检测的精度,尤其是在处理小目标和复杂背景时表现更佳。代码复现部分展示了如何在 YOLOv8 中实现 DEAB 模块,并替换原有模块进行训练。原创 2025-01-24 12:00:00 · 103 阅读 · 0 评论 -
小波卷积(wavelet convolution)模型详解及代码复现
研究表明,小波卷积网络在处理复杂的自然图像时,能够以更少的参数数量获得与传统CNN相当甚至更好的性能。DWT能够有效分解信号的不同频率成分,而小波域卷积则充分利用了小波系数的稀疏性和局部性,使得模型可以在不显著增加参数数量的情况下,获得更大的感受野。研究表明,小波卷积网络能够在保持较小参数数量的同时,获得较大的感受野,从而更好地捕捉图像的局部特征和全局结构信息。这种设计使得WTConv在保持较小卷积核的同时,能够获得较大的感受野,从而在不显著增加参数数量的情况下,增强了模型对低频信息的捕捉能力。原创 2025-01-23 12:00:00 · 334 阅读 · 0 评论 -
多尺度卷积注意力模型详解
通过这种方式,多尺度卷积注意力模型能够在不增加过多计算负担的情况下,有效融合多尺度信息,为后续的图像分析任务提供更加丰富和准确的特征表示。通过这种方式,MSCA模块能够在不增加过多计算负担的情况下,有效融合多尺度信息,为后续的图像分析任务提供更加丰富和准确的特征表示。通过这种方式构建的多尺度卷积注意力模型能够有效捕捉图像中的多尺度信息,并自适应地聚焦于重要区域,从而提高模型的性能和可解释性。这一模块巧妙地结合了不同尺度的卷积核,能够有效捕捉图像中的多尺度信息,为后续的注意力机制提供丰富的特征表示。原创 2025-01-23 12:00:00 · 106 阅读 · 0 评论 -
conv2former模型详解及代码复现
在Conv2Former模型中,大核卷积是一个关键的创新点,它突破了传统卷积神经网络(ConvNets)的设计局限,有效捕捉了长距离依赖关系。“卷积调制模块是Conv2Former架构的核心创新之一,它巧妙地融合了卷积神经网络和Transformer的优势,为视觉识别任务提供了一种高效的特征提取方法。卷积调制模块是Conv2Former架构的核心创新之一,它巧妙地融合了卷积神经网络和Transformer的优势,为视觉识别任务提供了一种高效的特征提取方法。原创 2025-01-22 12:00:00 · 441 阅读 · 0 评论 -
skipcrossnets模型详解及代码复现
例如,在KITTI数据集上的实验结果表明,SkipcrossNets-R仅需59%的参数数量和57%的计算量,就能达到与PLARD(一种领先的道路检测方法)相当的性能水平。例如,在KITTI数据集上的实验结果表明,SkipcrossNets-R仅需59%的参数数量和57%的计算量,就能达到与PLARD(一种领先的道路检测方法)相当的性能水平。技巧来提高模型的训练效率和性能。通过这种方式,SkipcrossNets能够在保持高性能的同时,显著降低模型的参数数量和计算量,从而提高模型的训练效率和泛化能力。原创 2025-01-21 23:11:41 · 211 阅读 · 0 评论 -
直方图如注意力机制HSA详解及代码复现
在深入探讨直方图自注意力机制(HSA)的基本原理之前,我们需要理解其在深度学习领域中的重要地位。HSA作为一种创新的注意力机制,旨在解决传统注意力方法在处理大规模数据时面临的效率和内存占用问题。HSA的核心思想是通过构建数据的直方图来简化注意力计算过程。原创 2025-01-21 12:00:00 · 55 阅读 · 0 评论 -
Token Recovering Attention (TRA)模型详解及代码复现
在深入探讨TRA模型的核心思想之前,我们需要了解其诞生的背景。TRA模型是为了解决视频姿态Transformer(VPT)中的问题而提出的。:随着输入序列长度的增加,模型的计算复杂度呈平方级增长。:相邻帧之间的相似性导致视频中存在大量冗余信息。TRA模型的创新点在于提出了一种基于沙漏结构的高效三维人体姿态估计框架,HourglassTokenizer(HoT),旨在通过剪枝和恢复操作来优化模型效率,同时保持较大的时间感受野。原创 2025-01-20 12:00:00 · 125 阅读 · 0 评论