贝叶斯推断

贝叶斯推断 贝叶斯模型观点:参数模型q(x;θ)q(x;θ)q(x;\theta) 中的参数 θθ\theta 是被确定的变量(deterministic variable)。 贝叶斯预测分布 训练样本是 D={xi}ni=1D={xi}i=1n\mathcal D= \{x_i\}_{...

2018-07-09 20:25:20

阅读数:42

评论数:0

《碎片记录》—— 2018-07-02 07:29:09

Date Unknown Interpretations Source 2018-05-16 09:14:18 2018年5月17日18:42:15 Bayesian inference下解释DKL(P∥Q)DKL(P‖Q)D_{KL}(P\Vert ...

2018-07-02 07:32:10

阅读数:43

评论数:0

多元高斯分布的MLE、贝叶斯条件概率和线性判别分析LDA的生成方法总结

Gaussian model 给出 ddd 维随机向量(pattern) xxx ,即随机变量 {x1,x2,...,xn}{x1,x2,...,xn}\{x_1,x_2,...,x_n\} 其高斯分布表示: q(x;μ,Σ)=1(2π)d2det(Σ)12exp(12(x−μ)TΣ−1(x−...

2018-06-02 19:41:10

阅读数:304

评论数:0

jacobian行列式以及生成相同协方差的数据和不同协方差的数据的函数

jacobian 设随机变量xxx 服从正态分布N=(μ,σ2)N=(μ,σ2)N=(\mu,\sigma^2),概率密度函数为f(x)f(x)f(x),则xxx的仿射变换(affine transformation): r=ax+b(1)(1)r=ax+br = ax + b \tag{1}...

2018-06-02 10:20:01

阅读数:70

评论数:1

matlab画一个一维高斯分布和似然估计

n=5;m=0;s=1;x=s*randn(n,1)+m;mh=mean(x);sh = std(x,1); X=linspace(-4,4,100);Y=exp(-(X-m).^2./(2*s^2))/(2*pi*s); Yh=exp(-(X-mh).^2./(2*sh^2))/(2*pi*sh...

2018-06-01 21:13:17

阅读数:82

评论数:0

统计估计(statistical estimation)

统计估计(statistical estimation) 即到手的数据概率分布是未知的, 我们只能从样本集合里估计数据潜在的概率分布(underlying propability distribution). 基础 估计(estimator)μ^μ^\hat\mu:从样本得到的定量估计...

2018-05-18 07:50:14

阅读数:211

评论数:0

贝叶斯定理、例子

Bayes’ Theorem 事件的发生都是有因果的(这里的因果不是必然关系,他们之间的联系是用概率刻画的),原因(或者因素)是xxx, 结果(或者影响)是yyy,贝叶斯定理告诉一个事实,如果知道因素xxx已经触发的条件下,产生影响yyy的概率是Pr(y|x)Pr(y|x)P_r(y \ver...

2018-05-17 06:48:45

阅读数:205

评论数:0

多元正态分布的性质和定理

多元高斯分布 向量随机变量X=[X1...Xn]TX=[X1...Xn]TX= [X_1 ... X_n]^T服从多元高斯分布,均值为μ∈Rnμ∈Rn\mu \in R^n(这里μμ\mu是一个n维向量),协方差矩阵为Σ∈S++nΣ∈S++n\Sigma \in {S_{++}}^n ,(S++...

2018-04-11 22:38:56

阅读数:428

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭