nomasp

風立ちぬ、いざ生きめやも」

只要你敢,总会有光芒指引你

写作最快乐的事莫过于让作品成为阅读者心中的光芒。只要你敢,总会有光芒指引你。——韩寒为雀巢咖啡所写广告前天读完了第三本韩寒的书——《我所理解的生活》,感觉他的书名都很有特色。比如说《1988:我想和这个世界谈谈》、《他的国》,这些名字一度让我想要模仿却未能想出一个更好的名字。虽然读的书还算多,但写...

2015-03-31 22:37:56

阅读数 2896

评论数 1

【万里征程——Windows App开发】编辑文本及键盘输入

相信大家都会使用TextBox,但如果要让文本在TextBox中换行该怎么做呢?将TextWrapping属性设置为Wrap,将AcceptsReturn属性设置为True就好咯。PasswordBox很明显就是一个密码框了,和其他的控件相比其有2个特殊之处,一个是其可以用MaxLength来控制...

2015-03-31 22:23:53

阅读数 5544

评论数 0

【SICP练习】149 练习4.5

练习4-5原文Exercise 4.5. Scheme allows an additional syntax for cond clauses, ( => ). If evaluates to a true value, then is evaluated. Its value mu...

2015-03-31 17:11:03

阅读数 3183

评论数 0

【万里征程——Windows App开发】控件大集合2

下面再来看看一些前面还没有讲过的控件,不过控件太多以至于无法全部列出来,大家只好举一反三啦。Button前面最常用的控件就是Button啦,Button还有一个有意思的属性呢,当把鼠标指针放在Button上时,就会在Button的头顶冒出一串文本啦。这个不太截图哎……<Button Tool...

2015-03-31 16:20:37

阅读数 5719

评论数 0

【万里征程——Windows App开发】控件大集合1

使用诸如 Blend for Visual Studio 或 Microsoft Visual Studio XAML 设计器的设计工具。 在 Visual Studio XAML 编辑器中将控件添加到 XAML 标记中。 在代码中添加控件。 当应用运行时会看到你在代码中添加的控件,但在 Vi...

2015-03-31 15:07:45

阅读数 5667

评论数 0

【SICP练习】148 练习4.4

练习4-4原文Exercise 4.4. Recall the definitions of the special forms and and or from chapter 1: ● and: The expressions are evaluated from left to ri...

2015-03-31 13:19:49

阅读数 2838

评论数 0

【万里征程——Windows App开发】页面布局和基本导航

上一篇博客中大概的新建了一个应用,几乎是空白的。如果是初学者的话现在当然想往里面加点东西对不对。那么这篇博客就来看看页面的布局都是怎样的。首先安装上一篇博客中的顺序来新建一个项目。新建好之后就点开MainPage.xaml开始敲代码啦。^_^<Grid Background="{T...

2015-03-30 11:00:06

阅读数 6740

评论数 0

【万里征程——Windows App开发】开发准备

操作系统及SDK操作系统如果打算开发Windows App,那么你的电脑就不能再用老旧的Windows 7了。推荐使用Windows 8.1。写这篇博客的时候,我用的操作系统是Windows 10 Pro Technical Preview [Build 10041].操作系统除了在官网下载之外,...

2015-03-29 19:37:39

阅读数 5667

评论数 8

【SICP练习】147 练习4.3

练习4-3原文Exercise 4.3. Rewrite eval so that the dispatch is done in data-directed style. Compare this with the datadirected differentiation procedure ...

2015-03-29 19:35:50

阅读数 2277

评论数 0

【SICP练习】146 练习4.2

练习4-2原文Exercise 4.2. Louis Reasoner plans to reorder the cond clauses in eval so that the clause for procedure applications appears before the claus...

2015-03-29 19:31:59

阅读数 2146

评论数 0

【SICP练习】145 练习4.1

练习4-1原文Exercise 4.1. Notice that we cannot tell whether the metacircular evaluator evaluates operands from left to right or from right to left. Its ...

2015-03-29 16:27:24

阅读数 2743

评论数 0

【SICP练习】144 练习3.82

练习3-82原文Exercise 3.82. Redo exercise 3.5 on Monte Carlo integration in terms of streams. The stream version of estimate-integral will not have an ar...

2015-03-29 15:38:54

阅读数 2761

评论数 0

【SICP练习】143 练习3.81

练习3-81原文“random” numbers. Produce a stream formulation of this same generator that operates on an input stream of requests to generate a new random n...

2015-03-29 15:31:56

阅读数 2373

评论数 0

【SICP练习】142 练习3.77

练习3-77原文Exercise 3.77. The integral procedure used above was analogous to the “implicit” definition of the infinite stream of integers in section 3....

2015-03-29 11:45:29

阅读数 1625

评论数 0

【SICP练习】141 练习3.72

练习3-72原文Exercise 3.72. In a similar way to exercise 3.71 generate a stream of all numbers that can be written as the sum of two squares in three dif...

2015-03-29 11:15:42

阅读数 1886

评论数 0

【SICP练习】140 练习3.71

练习3-71原文代码(define (Ramanujan s) (define (stream-cadr s) (stream-car (stream-cdr s))) (define (stream-cddr s) (stream-cdr (stream-cd...

2015-03-29 11:10:17

阅读数 2797

评论数 0

【SICP练习】139 练习3.70

练习3-70原文代码(define (merge-weighted s1 s2 weight) (cond ((stream-null? s1) s2) ((stream-null? s2) s1) (else (let ((cars1 (stream-car s1)...

2015-03-29 10:41:16

阅读数 1713

评论数 0

【SICP练习】138 练习3.69

练习3-69原文代码 (define (triples s t u) (cons-stream (list (stream-car s) (stream-car t) (stream-car u)) (interleave ...

2015-03-29 10:20:34

阅读数 2081

评论数 0

【SICP练习】137 练习3.68

练习3-68原文Exercise 3.68. Louis Reasoner thinks that building a stream of pairs from three parts is unnecessarily complicated. Instead of separating th...

2015-03-29 10:11:25

阅读数 2316

评论数 0

【SICP练习】136 练习3.67

练习3-67原文Exercise 3.67. Modify the pairs procedure so that (pairs integers integers) will produce the stream of all pairs of integers (i,j) (without ...

2015-03-29 10:04:31

阅读数 2509

评论数 0

提示
确定要删除当前文章?
取消 删除