Cityscapes数据集gtFine部分介绍

数据集 专栏收录该内容
4 篇文章 4 订阅

Cityscape是一个大型语义分割数据集,包含多种类型数据子集和处理代码

 

 

Cityscape包含多种数据集,本文只关注gtFine/精细标注的语义分割部分

gtFine部分的标注,对应leftImg8bit的原始图片

 

 

数据及代码下载链接:

数据集官方网站:https://www.cityscapes-dataset.com/ (推荐使用迅雷下载)

github处理代码地址:https://github.com/mcordts/cityscapesScripts

 

国内下载连接:

aistudio下载链接(包括gtFine及leftImg8bit):https://aistudio.baidu.com/aistudio/datasetdetail/48855

gtFine数据(无对应的Img) 下载链接:https://pan.baidu.com/s/1hWRDTnDD1uE29W2691x1xQ  提取码:9tcd 

其他博主数据集下载地址(包括gtFine及leftImg8bit):https://blog.csdn.net/zym19941119/article/details/81198315

 

 

 

gtFine数据集基本信息:

影像:

shape=(1024,2048,4)

num=2975+500+1525=5000幅

标注:

  • 35个小类(name、id列,用于评测)
  • 8大类(category、catId列,用于创建 ground truth)
  • 20个train类(trainId列,官方提供,可根据需要调整)

可以在处理代码 helpers / labels.py中查看对应标签(可见本文末尾),labels.py中也包含了各种分类说明

 

gtFine文件结构:

数据分布:

train(aachen 174*4、bochum 96*4、bremen 316*4、cologne 154*4、darmstadt 85*4、dusseldorf 221*4、erfurt 109*4、hamburg 248*4、hanover 196*4、jena 119*4、krefeld 99*4、monchengladbach 94*4、strasbourg 365*4、stuttgart 196*4、tubingen 144*4、ulm 95*4、weimar 142*4、zurich 122*4),共2975*4个文件

val(frankfurt 267*4、lindau 59*4、munster 174*4),共500*4个文件

test(berlin 544*4、bielefeld 181*4、bonn 46*4、leverkusen 58*4、mainz 298*4、munich 398*4),共1525*4个文件

 

train、val单个样本结构:

 

  • color:  彩色类别图(用于可视化观察)
  • instanceIds:  实例分割ID
  • labelIds:  标签ID(35小类)
  • polygons:  边界多边形(35小类及对应边界像素位置)

 

 

如果需要使用trainId分类编码,可以直接调用preparation / createTrainIdLabelImgs.py,修改其中的路径参数(data_path/cityscapesPath)即可生成新gt(需要安装pillow库,部分版本安装后运行此代码报错pillow未安装,可以将helpers/chHelpers.py、preparation/json2labelImg.py 中的 from PIL import PILLOW_VERSION  改为import PIL)

如果需要其他类别也可以根据代码自行修改

 

test结构尚未研究

 

处理代码结构:

  • helpers: helper files that are included by other scripts   labels.py包含标签类别详解
  • viewer: view the images and the annotations
  • preparation: convert the ground truth annotations into a format suitable for your approach    createTrainIdLabelImgs.py可以创建trainId类标签图像
  • evaluation: validate your approach
  • annotation: the annotation tool used for labeling the dataset
  • download: downloader for Cityscapes packages

 

labels = [
    #       name                     id    trainId   category            catId     hasInstances   ignoreInEval   color
    Label(  'unlabeled'            ,  0 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'ego vehicle'          ,  1 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'rectification border' ,  2 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'out of roi'           ,  3 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'static'               ,  4 ,      255 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'dynamic'              ,  5 ,      255 , 'void'            , 0       , False        , True         , (111, 74,  0) ),
    Label(  'ground'               ,  6 ,      255 , 'void'            , 0       , False        , True         , ( 81,  0, 81) ),
    Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (128, 64,128) ),
    Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (244, 35,232) ),
    Label(  'parking'              ,  9 ,      255 , 'flat'            , 1       , False        , True         , (250,170,160) ),
    Label(  'rail track'           , 10 ,      255 , 'flat'            , 1       , False        , True         , (230,150,140) ),
    Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 70, 70, 70) ),
    Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (102,102,156) ),
    Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (190,153,153) ),
    Label(  'guard rail'           , 14 ,      255 , 'construction'    , 2       , False        , True         , (180,165,180) ),
    Label(  'bridge'               , 15 ,      255 , 'construction'    , 2       , False        , True         , (150,100,100) ),
    Label(  'tunnel'               , 16 ,      255 , 'construction'    , 2       , False        , True         , (150,120, 90) ),
    Label(  'pole'                 , 17 ,        5 , 'object'          , 3       , False        , False        , (153,153,153) ),
    Label(  'polegroup'            , 18 ,      255 , 'object'          , 3       , False        , True         , (153,153,153) ),
    Label(  'traffic light'        , 19 ,        6 , 'object'          , 3       , False        , False        , (250,170, 30) ),
    Label(  'traffic sign'         , 20 ,        7 , 'object'          , 3       , False        , False        , (220,220,  0) ),
    Label(  'vegetation'           , 21 ,        8 , 'nature'          , 4       , False        , False        , (107,142, 35) ),
    Label(  'terrain'              , 22 ,        9 , 'nature'          , 4       , False        , False        , (152,251,152) ),
    Label(  'sky'                  , 23 ,       10 , 'sky'             , 5       , False        , False        , ( 70,130,180) ),
    Label(  'person'               , 24 ,       11 , 'human'           , 6       , True         , False        , (220, 20, 60) ),
    Label(  'rider'                , 25 ,       12 , 'human'           , 6       , True         , False        , (255,  0,  0) ),
    Label(  'car'                  , 26 ,       13 , 'vehicle'         , 7       , True         , False        , (  0,  0,142) ),
    Label(  'truck'                , 27 ,       14 , 'vehicle'         , 7       , True         , False        , (  0,  0, 70) ),
    Label(  'bus'                  , 28 ,       15 , 'vehicle'         , 7       , True         , False        , (  0, 60,100) ),
    Label(  'caravan'              , 29 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0, 90) ),
    Label(  'trailer'              , 30 ,      255 , 'vehicle'         , 7       , True         , True         , (  0,  0,110) ),
    Label(  'train'                , 31 ,       16 , 'vehicle'         , 7       , True         , False        , (  0, 80,100) ),
    Label(  'motorcycle'           , 32 ,       17 , 'vehicle'         , 7       , True         , False        , (  0,  0,230) ),
    Label(  'bicycle'              , 33 ,       18 , 'vehicle'         , 7       , True         , False        , (119, 11, 32) ),
    Label(  'license plate'        , -1 ,       -1 , 'vehicle'         , 7       , False        , True         , (  0,  0,142) ),
]

 

  • 3
    点赞
  • 9
    评论
  • 7
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值