【人工智能】“互联网+”之后,人工智能如何影响制造业?

响应十九大“推动互联网、大数据、人工智能和实体经济深度融合”的号召,3月7日,由腾讯研究院联合国家工业信息安全发展研究中心,依托互联网+工业研究中心平台,发起的首届“人工智能+”产业研讨会如期举办。本次研讨会以“人工智能+制造业”为主题,邀请人工智能及制造业领域相关的协会机构、高校、企业等多方专家,就进一步掌握人工智能融合实体产业的模式和方法,展开了充分交流和探讨。


640?wx_fmt=png&wxfrom=5&wx_lazy=1&retryload=1


腾讯研究院秘书长张钦坤、产业研究中心主任李刚出席了会议,热烈欢迎各位专家到场。会议由高级研究员吴朋阳主持,首先介绍了“人工智能+”产业研究课题的背景。


目前我国制造业发展面临内外压力较大,人工智能及相关技术成为制造业转型升级的契机。但在这一发展过程中,不同的制造行业企业面临的困难和问题有别、对新技术应用的理解和需求也不同,再宏观、笼统地分析意义已然不大。


如何深入理解不同制造企业的现状和需求,归纳主要需求场景、明确合适的技术和应用,为企业逐步实现数字化、网络化、智能化的转型提供可实践的路径参考,最终推动制造企业的竞争力提升,是本次课题研究的主要目的。


640?wx_fmt=png


国家工业信息安全发展研究中心、信息化战略研究室主任高晓雨,负责牵头本次研究工作,对“人工智能+制造业”的课题研究思路进行了阐述。


首先要明确概念,回答什么是“人工智能+制造业”;其次是把握国际情况,主要发达工业国家如何在政策上推动和扶持这两个产业融合发展;然后归纳案例方法,不同的制造业环节如何利用新技术应用实现智能化。其中我国的互联网企业已形成一定的国际竞争优势,应重点分析总结其赋能制造业的创新经验;接着分析制造业现状,基于定量调研、掌握当前制造企业对人工智能相关技术应用的理解、痛点和需求;最后制定融合发展建议,从政府、产业和企业不同层次给出决策参考。


随后各位专家与研究学者畅所欲言,围绕“人工智能+制造业”课题展开了热烈探讨。


王安耕:不要把“智能泛化”


原中信集团总工、国家信息化专家咨询委员会专家王安耕首先发言,回顾了中国制造业信息化的历史和现状,并指出目前的最大挑战。


从数字计算机出现起,社会就步入了数字化阶段。制造企业开始转型的第一阶段一定是数字化,其面临的加工对象由模拟变成了数字。这一阶段开始得很早、同时也很漫长,很多模拟型文件要转化为数字型文件录入计算机,比如财务工作。


第二个阶段是网络化,这一阶段首先从单位内部网络化开始,如美国最初将网络用于军队内部网的建立,之后扩展到整个社会成为互联网。企业如果想参与“互联网+”这一模式,就必须先拥有内部网络,各个部门要统一规则、信息共享,而非信息孤岛式独立存在的部分。


在网络化充分实现后,企业逐步向智能化(第三阶段)过渡。目前我国仅有1/6的制造业企业可以达到“互联网+”(网络化)水平,其余5/6的企业连内部网络构建都还不完善,企业部门、流程等还没有构成一个整体,无法实现跨越空间、信息交流的功能。这是当前我国制造业面临的最大挑战。


640?wx_fmt=png


基于自身的丰富经验,王安耕对研究的整体内容提出了四点建议:


一是概念框架要清楚。现在市场上“人工智能”相关概念太多,不宜再造一个新概念,而应建立一个能把主要概念都框住的通用框架;


二是不要把“智能”泛化。智能化是数字化、网络化之后的高级阶段,不能混为一谈,研究智能化应该聚焦在人工智能上;


三是可增加新的评估体系。针对智能化水平,可从主要的三个维度评估:覆盖范围(如智能化在企业中覆盖了一个工位还是一条生产线)、实现程度(如智能化设备达到了感知、决策、执行或自我提升的哪一阶段)和技术水平(如企业是自主研发还是外包采购智能化设备)。同时注意智能化应该以数字化、网络化为基础,比如单项应用,不管多复杂都只能算处在数字化阶段。


四是要考虑读者特点。给非专业读者阅读,国际政策等内容不宜太多、综述即可。


蒋明炜:应从需求场景出发、用要素定义“智能”


机械工业自动化研究所首席专家蒋明炜,对“人工智能+制造业”融合的发展阶段划分提出了不同意见。其表示:“数字化-网络化-智能化”按阶段划分未必合适。很多情况下,都有可能同时涉及这三方面。比如企业实施ERP是数字化,同时也一定要有网络否则无法实现(也就包含网络化)。人工智能具有非常明确的特征,不能与一般数字化、网络化、两化融合混淆。


640?wx_fmt=png


那么该如何定义智能化?蒋明炜用数控机床举了两个生动的例子。


①传统的数控机床有没有智能?没有。因为其在给定程序下,即使程序出错也会继续运转;②智能的数控机床应该如何?智能数控机床能感知切削力的变化,并分析判断刀具磨损,进一步决定是用刀具补偿还是换刀以保证加工精度。具有自动感知、分析、反馈、决策、控制等要素,这才是智能。


因此他建议以实现智能化的要素为基础,围绕制造业企业的需求场景,来定义和描述“人工智能+制造”的发展框架模型,并基于此为提出具体建议。主要包括6大场景:①智能产品;②智能设计(如专家系统);③智能经营(如产业链、价值链协调);④智能生产(车间级以下,如装备);⑤智能服务;⑥智能决策。


针对这些场景,结合具体案例分析,归纳总结出在哪些方面、具备哪些要素才能叫做智能。这样做的好处是,由于不同类型的企业特征和需求不同,可以根据具体情况选择适合自己的场景参考,而并不需要面面俱到。比如苹果和小米公司专注于设计和售后服务、制造都是交给代工厂,如果用全面评估智能等级的方式(如1.0/2.0/3.0),它们在生产制造环节的缺失就会导致难以评估。


此外,王安耕和蒋明炜两位专家,还就广为人知的红领集团案例进行了深入探讨。两位认为红领集团的定制化制造确实好,但不能算作“智能生产”。因其生产制造的环节,实际上还是使用大量的人工作业。红领真正超前的地方,是在于实现大规模的量体裁衣。通过对几亿个模板的分析,红领总结出了五个特征参数,根据特征参数实现快速的大规模定制。该企业模式应算作“智能设计”——通过标准化、模块化、系列化的材料和专家系统,最大限度地缩短设计时间。


孙富春:可从感、联、知、控、安全五方面,论述人工智能在制造业中的应用


清华大学智能科学系教授孙富春是人工智能领域专家,主要从人工智能角度阐述了观点。一是对人工智能的定义要明确清晰,可以从范式发展的角度统一定义,即从符号主义到联接主义再到生物启发;二是人工智能落到制造业,可以基于CPS理论从感、联、知、控、安全等五个方面,结合工业生产流程来定义和描述。


此外,孙富春还谈到人工智能给社会、企业带来的诸多改变。如快递服务已经可以实现当天付款当天到货,增添了不少便利;制造业企业应用机器人进行生产制造,不但降低了人工投入、还提高了数倍产量等。


人工智能极大地提高了效率、推动了生产进步,由此引发各国纷纷出台相关政策引领和发展人工智能。各方面的突破逐渐累积起来,最终形成企业、社会的整体突破,才是人工智能应用的真正突破,需要“量变引起质变”的过程。


陈海涛:研究需要有科普性和展望性


吉林大学管理学院教授陈海涛,主要从研究方法和逻辑的角度提出了建议:一是要明确研究主线,是以人工智能为主、还是制造业为主;二是要有科普性和展望性,面对普通读者要弱化学术性,案例不用写太大,更多用白话的方式、描绘远景和未来;三是写先进的代表,不用分省、分地域,大家都向先进看齐即可;四是研究成果不必大而全,主要为读者提供有逻辑的、递进性的、有趣的内容;五是政策解读要分析背景,帮助读者了解政策背后的原因和条件才有借鉴意义。


针对“人工智能+制造业”的融合,陈海涛认为可以将“人工智能+”作为主线,研究其逐步嵌入到制造业中的过程。可以重点描述企业制造模式中智能化的各种典型场景,如向企业描述理想中的智能化工厂是怎样进行运作的,以此为企业展现值得期待的远景图。


陈琛:应重点构建平台,帮助中小企业转型


机械工业信息研究院、智能制造发展研究所副所长陈琛,更多从制造业企业的现状痛点出发提出了思考。其表示在考察过的一百多家制造企业、尤其是中小企业中,发现了很多问题。如企业信息化口号与实际技术、设备并不匹配,难以实现;智能制造方面的服务咨询较缺乏,企业不知如何做等等。其呼吁政府和业界不光要关注代表性企业,更应聚焦中小型企业的困难,重点研究如何形成针对中小企业的平台式解决方案,为它们提供传感、图像识别、数据挖掘等先进技术的有效支持。


针对本次课题研究,陈琛建议:一是可为中小企业专设章节,重点研究为这类企业升级提供的平台化服务;二是政策研究可图表化,易于读者理解;三是案例要多、覆盖面要广,这样可以为不同制造业企业提供参考选择;四是强调发展的“窗口期”,增强“人工智能+”处于关键机遇时期的分析、以提高企业的紧迫感与行动力。


秦业:人工智能+制造,一是专家系统、二是深度学习


中国信息通信研究院、政策部主任工程师秦业认为,首先要弄清人工智能+制造业是什么。目前主要有两方面:①专家系统,就是if-then体系,如焊接机器人;②深度学习。其次是分清楚融合的阶段环节,包括生产、采购、供应、销售和服务等方面,人工智能与制造业的融合过程是单点逐步渗透、而非全方位的迅速转变。然后提供成功的转型案例,让企业学习到如何发现并解决过程中的痛点问题。最后建立产业生态系统,明确各类企业在其中承担的不同角色,便于企业快速对接能够解决自身需求的技术和服务提供商。


晋文静:制造业智能化三大目标—时间、节拍和质量


北京天泽智云首席数据科学家晋文静,从制造业服务商的角度阐述了观点:一是要从制造业发展的终极目标出发,掌握制造业智能化发展的重点方向。制造业企业的发展,最终是为了①降低生产制造时间;②维持高效率;③提高产品质量。主要关注三大指标:时间、节拍、质量。因此“人工智能+制造业”可以从设备、能效和质量三方面,研究融合转型的方法。


二是要明确智能化与自动化的差别。自动化是做人不愿意做的事情(如简单重复劳动),而智能化是做人做不了的事情(如高级经验的传递)


三是强化工业智能在制造业的应用。如何把工业智能和工业互联网的技术,真正用于制造业的提质、降本、增效、减存,最终实现企业从以产品为核心、到以服务为核心的价值转型。


人工智能的发展方兴未艾、制造业的转型命运攸关,两者的融合如何能跨越发展?本次研讨会有幸邀请多方专家,提供了不同角度的思考与启发,为“人工智能+”产业研究这一重要课题研究拉开了序幕。




人工智能将为传统制造业带来什么?

   石泽:吴恩达离开百度后,将创业项目聚焦在制造业,希望通过为制造业转型提供技术、培训、运营流程管理等解决方案,成为这一领域的AI服务提供商。

640?wx_fmt=jpeg

  “物理世界”(以制造业设备所代表)和“数字世界”(由人工智能、传感器等技术代表)的碰撞催生了制造业的巨大的转变。两个世界的融合将为下一轮经济发展注入新的动能。以人工智能为代表的新技术正在对生产流程、生产模式和供应链体系等生产运营过程产生巨大影响。

  据埃森哲公司测算,到2035年,人工智能技术的应用将使制造业总增长值(GVA)增长近4万亿美元,年度增长率达到4.4%。作为新的“生产要素”,人工智能对于制造业的影响有几方面:(1)机器将部分取代人的工作,实现智能自动化。在中国、日本等国家,可以弥补由于老龄化、人力资源成本提升带来的劳动力短缺问题。(2)人工智能通过增强劳动力技能带来生产效率的提升,以提高人的效率,经过重新培训的员工可以执行更高级的设计、编程和维护任务或创造性的工作。(3)人工智能与制造业的深度融合不但将加速新产品的开发过程,还将彻底颠覆原有的生产流程,人工智能程序不仅可以自动完成任务,而且还可以实现全新的业务流程。比如,根据客户的个性化需求自定义产品配置。这将是人工智能在制造业领域的最终目标。

  斯坦福人工智能实验室主任、前谷歌大脑项目负责人、前百度首席科学家吴恩达(Andrew Ng)离开百度以后,将自己的创业项目聚焦在制造业领域,希望通过为制造业转型提供技术、培训、运营流程管理等一系列解决方案,成为在制造业领域的AI服务提供商。我通过与吴恩达的交流,希望了解这位站在AI前沿的科学家是如何理解人工智能将为传统制造业带来的改变。

  人工智能将改变制造业的哪些方面

  吴恩达认为,目前,人工智能可能在制造业的四个领域中得到应用。

  首先,制造业的很多细分领域依赖视觉检查。 AI设备对样品进行视觉检查的能力正在迅速提高,这使我们能够建立自动视觉检测系统。人工智能能够比较产品和照片,并决定是否通过检查。吴恩达团队将机器视觉应用在制造业中的精确质量分析领域,通过比人眼敏感多倍的相机结合AI技术提升图像理解的能力。该公司开发了机器视觉工具,用于在超出人类视觉范围的分辨率下发现电路板等产品中的微观缺陷,并使用机器学习算法对极少量的样本图像进行培训。

  经济发展新动力

  大型传统企业如何向人工智能转型?

  石泽:这一轮技术浪潮中的积累的先发优势将不断扩大差距。那些没能及时转变的公司,将不得不在巨变的商业环境裹挟中艰难应付。

其次,优化生产过程。AI通过调节和改进生产过程中的参数,对于制造中使用的很多机器进行参数设置。生产过程中,机器需要进行诸多参数的设置。例如,在注塑中,可能需要控制塑料的温度、冷却时间表、速度等等。所有这些参数都可能受到各种外部因素的影响,例如,外界温度等。通过收集所有这些数据,AI可以改进自动设置和调整机器的参数。

  第三,提高新产品制造过程中的设计、制造效率。制造新产品无论在设计还是在生产过程中都是一个迭代的过程,充满了微调。人工智能将能够显著缩短这一过程,提升制造行业的效率。

  第四,确定产品质量问题来源。许多产品的制造过程涉及到一系列的步骤,因此,如果最终产品没有通过检验,有时难以确定问题来源。人工智能、数据科学和数据分析将帮助自动识别生产中有问题的步骤。

  目前Landing.ai为制造行业的合作伙伴提供了视觉检测、自动化控制、智能化校准以及问题根源分析等解决方案。除了吴恩达提到的这些应用。未来工厂可能会采用智能自动叉车和传送带搬运材料和成品。机器视觉领域,除了在微观层面质量检测方面的应用,未来还可以训练机器人感知周围的环境、避免中断或者危险。此外,人工智能还可在制造业领域中的自适应制造、自动质量控制、预防性维护、无人驾驶等领域应用。

  传统企业向人工智能转型面临的挑战

  吴恩达认为,对大企业而言,在应用人工智能方面,目前最大的挑战是如何应用AI技术扩大业务规模,目前能够帮助企业完成这一挑战的人才和AI工具和还不存在。对于传统制造企业来说,应用AI的主要障碍有几方面,其中之一是人工智能技术的复杂性。目前很少有团队能够很好的理解并且有效的实施这项技术。同时,在AI科技公司之外,很少有公司能够获取足够的AI技术人才。

  AI整合战略本身和技术一样复杂,这个过程涉及到数据采集、组织结构设计、AI项目的优先次序等等。而且,好的AI战略专家比AI技术专家更加罕见。企业转型是牵一发动全局的过程,尤其是涉及到劳动力结构调整,过程本身比较复杂,其中也包括文化挑战,这方面特别是劳动力转型的问题,需要一定的时间过渡。制造企业需要为员工提供更完善的再培训,帮助他们为未来的工作做好准备。传统企业除了需要做好转型方面的人才、技术储备,同时需要让员工理解人工智能的目的不是为了取代劳动力,而是为了增强员工能力、为企业赋能,帮助其成功。

  人工智能可以通过自适应制造、自动质量控制、预防性维护等解决方案有效地应对当今制造业面临的挑战。这些AI在制造业的应用中,有些技术已经开始部分的应用,但还没有得到广泛的应用,技术的复杂和资源(包括人力资源)的匮乏目前转型的障碍之一。

  传统制造业公司和AI技术公司的定位

  由于传统制造业在人工智能方面缺乏相应的人才。人工智能科技公司应该在培训劳动力方面发挥作用,率先在传统行业的新一波转型浪潮中帮助传统公司员工传授必要的技能。现阶段,传统公司可能会认为AI是一个难以想象的未来,但AI可以帮助企业实现部分任务的自动化,使员工能够承担更高层次的工作职责,并将其思想用于创造更多有价值的贡献。

  此外,吴恩达提到最近参加在北京举行的2018年工业互联网峰会,发现很多中国公司已经走上应用人工智能的道路。中国政府推进工业互联网发展的速度很快,并推动了许多改造传统工业的举措。通过组建工业互联网联盟,制定支持产业升级新政策,一大批企业开始全身心地迎接机器人、物联网、大数据和机器学习融合的工业物联网发展趋势。

  在传统制造业的全球版图中,转型对于发达国家和发展中国家所产生的影响各有不同。在发展中经济体,制造业向AI转型将使产品更容易实现规模化生产进而降低制造成本。AI还将帮助小规模生产者向全球供应链销售产品并从中受益。在发达经济体,人工智能与制造业的深度融合也将为推动新一代产品、设备和经验铺平道路。

  制造行业面临的某些挑战是普遍的,并非针对某一公司或者行业。在制造行业中应用AI技术背后的一些原则和理念是可重复性的。但吴恩达希望Landing.ai能够实现的目标是与制造企业合作开发针对特定行业的技术与培训,而不是做通用的技术工具。吴恩达团队开发了包括引进新技术、运营流程管理、重塑组织结构、AI人才战略在内的各方面AI转型计划,目前已与富士康、鸿海等公司达成合作。

  在此,请设想一下未来制造业的远期场景:由人工智能、大数据、云计算、5G通信、物联网等为代表的一系列技术簇将使未来的制造业从价值链、生产模式、商业模式、产品设计等多方面发生本质上的变化。由于技术的进步,产品自身将携带更多的信息或者更加智能。伴随消费力量的崛起,消费者主动参与设计和共同创造产品将成为可能。而个性化与定制化需求增加将逐渐瓦解目前所谓的大众消费市场。由于3D打印等技术的普及,“规模”未必“经济”。制造业的价值链也将重新分配。生产者绕开中间商直接吸引消费者。产品的生产模式也将发生转变,从“按预测量生产”到“按订单生产”。从想法到市场的速度加快,消费者也更直接的将需求反馈给生产者。伴随技术的演进,传统制造业需要拥抱未来,进行一场自我革命。

640?wx_fmt=png



人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。



产业智能官  AI-CPS


用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链


640?wx_fmt=png

640?wx_fmt=png

长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、智能金融”、“智能零售”、“智能驾驶”、智能城市新模式:“财富空间“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”


官方网站:AI-CPS.NET



本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





没有更多推荐了,返回首页