【数据结构与算法】二叉排序树C实现(含完整源码)

转载请注明出处:http://blog.csdn.net/ns_code/article/details/19823463


二叉排序树简介 

    二叉排序树(Binary Sort Tree,简称BST),又称二叉查找树,是红黑树、AVL树等的基础。它或是一棵空树,或者是具有下列性质的一棵二叉树:

   1、若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;

   2、若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;

   3、它的左右子树也分别为二叉排序树。

   下面的一棵树即为二叉排序树:

  

    很明显,对二叉排序树进行中序遍历,便可得到一个有序序列,该有序序列中的各元素按照从小到大的顺序排列,因此一个无序序列可以通过构造一棵二叉排序树而变成一个有序序列。


二叉排序树相关操作

    二叉排序树通常有查找、插入、删除等操作。查找操作很简单,无非就是递归查找,有点类似二叉树遍历的过程。插入操作也不难,一般是先在二叉排序树pTree中查找,看是否存在有等于给定值的元素,如果查找不到,则将给定值插入到该二叉排序树中,但是要保证插入后的树依然是二叉排序树。这样,新节点插入的位置便是唯一的,而且新插入的节点一定是一个新添加的叶子节点,并且是查找不成功时查找路径上访问的最后一个节点的左孩子或右孩子。正是由于其在查找过程中插入节点的特性,二叉排序树是一种动态树。

    在给出各操作实现的具体代码前,要详细看下二叉排序树的删除操作,删除操作相比于二叉排序树的其他操作要难些,但也只是相对于其本身的其他操作而已,真正理解了也就很容易了。闲话少说,下面就来具体分析二叉排序树的删除操作。

    我们假设在二叉排序树中要被删除的节点为p(即p指向的节点,下同),其父节点为f,当然节点p可能是节点f的的左孩子或右孩子,但在下面各种情况的分析中,你会发现,无论是左孩子还是右孩子,都不影响删除操作的通用性。很明显,删除操作要分为如下3种情况:

    1、若待删节点p为叶子节点,则删除p后,并不会破坏整棵树的结构,因此只需令p=NULL即可。

    2、若待删节点p只有左子树或右子树,则只需将左子树或右子树重接到p的父节点上即可,即执行如下操作:p=p->lchild或p=p->rchild。

    3、若待删节点p既有左子树又有右子树,显然就不如上面两种情况那么简单了。我们要使节点p被删除后,二叉排序树的结构不变,就需要对它的子树做一些操作,而且只需操作一个子树即可,操作左子树和操作右子树的思路相似,我们这里以操作左子树为例来实现节点p的删除操作,并结合下图做具体分析(图中三角形代表节点的左子树或右子树)。


    我们这里将图a展开为更详细的图b进行分析,则在删除节点p前,中序遍历该二叉排序树的结果为:...CL C...QL Q SL S P PR F ...,删除节点p后,我们要保持其他元素在该序列中的先后顺序不变,观察图b,我们可以采取如下两种做法:

    1)将节点p的左子树直接接到其父节点f上,作为f的左子树,将节点p的右子树接到节点s上,作为s的右子树(这里s为p的前驱节点,即p在有序序列中紧接在s的前面),而后删除节点p采用这种方法删除节点p后,得到的二叉排序树的形状如下图中的图c所示:


    采取该方法删除节点的实现代码如下:

/*
采用第一种算法从二叉排序树中删除指针p所指向的节点,
并在保持二叉排序树有序的情况下,将其左右子树重接到该二叉排序树中.
该函数主要用来被后面的删除函数调用
*/
void delete_Node1(BSTree &p)
{ 
	BSTree q,s;
	if(!p->lchild)	
	{	//如果左子树为空,则只需重接其右子树
		//这里包含了左右子树均为空的情况
		q = p;
		p = p->rchild ;
		free(q);
	}
	else if(!p->rchild)
	{	//如果右子树为空,则只需重接其左子树
		q = p;
		p = p->lchild;
		free(q);
	}
	else
	{	//如果左右子树都不为空,我们采取第一种方法来重接左右子树,
		//我们这里采取修改左子树的方法,也可以修改右子树,方法类似
		s = p->lchild;		//取待删节点的左节点

		//一直向右,最终s为待删节点的前驱节点
		//如果将各节点元素按从小到大顺序排列成一个序列,
		//则某节点的前驱节点即为序列中该节点的前面一个节点
		while(s->rchild)
			s = s->rchild;
		s->rchild = p->rchild;	//将p的右子树接为s的右子树
		q = p;
		p = p->lchild;		//将p的左子树直接接到其父节点的左子树上
		free(q);
	}
}
    2)将节点s的右子树重接到其父节点上,作为其父节点的右子树,而后用s替换掉带删节点p。采取这种方法删除节点p后,得到的二叉排序树的形状如上图中的图d所示。采用该方法删除节点的实现代码如下:

/*
采用第二种算法从二叉排序树中删除指针p所指向的节点,
并在保持二叉排序树有序的情况下,将其左右子树重接到该二叉排序树中.
该函数主要用来被后面的删除函数调用
*/
void delete_Node2(BSTree &p)
{
	BSTree q,s;		
	if(!p->lchild)	
	{	//如果左子树为空,则只需重接其右子树
		//这里包含了左右子树均为空的情况
		q = p;
		p = p->rchild ;
		free(q);
	}
	else if(!p->rchild)
	{	//如果右子树为空,则只需重接其左子树
		q = p;
		p = p->lchild;
		free(q);
	}
	else
	{	//如果左右子树都不为空,我们采取第二种方法来重接左右子树,
		//我们这里采取修改左子树的方法,也可以修改右子树,方法类似
		q = p;
		s = p->lchild;		//取待删节点的左节点
		while(s->rchild)		
		{	//一直向右,最终s为待删节点的前驱节点。
			//如果将各节点元素按从小到大顺序排列成一个序列,
			//则某节点的前驱节点即为序列中该节点的前面一个节点
			q = s;
			s = s->rchild;
		}
		//用s来替换待删节点p
		p->data = s->data;  
		//根据情况,将s的左子树重接到q上
		if(p != q)
			q->rchild = s->lchild;
		else
			q->lchild =s->lchild;
		free(s);
	}
}
 

完整源码

    上面重点分析了删除节点的思路和过程,下面给出二叉排序树各种操作实现的完整C代码(含测试代码并加有详细注释):

/*********************************
二叉排序树的相关操作实现
Author:兰亭风雨  Date:2014-02-23
Email:zyb_maodun@163.com
**********************************/
#include<stdio.h>
#include<stdlib.h>

typedef struct Node
{
	int data;
	struct Node *lchild;
	struct Node *rchild;
}NODE,*BSTree;


/*
在指针pTree所指的二叉排序树中递归查找关键字为key的元素,
若查找成功,则返回指向该元素节点的指针,否则返回NULL
*/
BSTree search(BSTree pTree,int key)
{
	if(!pTree || pTree->data == key)	//查找到时返回的pTree为该元素节点,没查找到时为NULL
		return pTree;
	else if(key < pTree->data)			//如果key小于当前节点的值,则在其左子树中递归查找
		return search(pTree->lchild,key);
	else								//如果key大于当前节点的值,则在其右子树中递归查找
		return search(pTree->rchild,key);
}


/*
在指针pTree所指的二叉排序树中递归查找关键字为key的元素,
若查找成功,则返回ture,并查找到的数据对应的节点指针保存在p中,
否则返回false,并将查找路径上访问的最后一个节点指针保存在p中。
这里的参数parent指向每次递归遍历的子树的根节点的父节点,即始终是参数pTree的父节点,
它的初始值为NULL,其目的是跟踪查找路径上访问的当前节点的父节点(即上一个访问节点)
该函数用来被后面的插入函数调用。
*/
bool search_BSTree(BSTree pTree,int key,BSTree parent,BSTree &p)
{
	if(!pTree)         //如果pTree为NULL,则查找不成功												
	{	//这里包含了树空,即pTree为NULL的情况
		p = parent;
		return false;
	}
	else             //否则,继续查找
	{								
		if(key == pTree->data)			//如果相等,则查找成功					
		{
			p = pTree;
			return true;
		}
		else if(key < pTree->data)		//在左子树中递归查找
			return search_BSTree(pTree->lchild,key,pTree,p);    
		else							//在右子树中递归查找
			return search_BSTree(pTree->rchild,key,pTree,p);
    }
}

/*
当在pTree所指向的二叉排序树中查找不到关键字为key的数据元素时,
将其插入该二叉排序树,并返回ture,否则返回false。
树空时插入会改变根节点的值,因此要传入引用。
*/
bool insert(BSTree &pTree,int key)
{
	BSTree p;
	if(!search_BSTree(pTree,key,NULL,p))		//如果查找失败,则执行插入操作
	{
		//为新节点分配空间,并对各域赋值
		BSTree pNew = (BSTree)malloc(sizeof(NODE));
		pNew->data = key;
		pNew->lchild = pNew->rchild = NULL;

		if(!p)						    //如果树空,则直接置pNew为根节点
			pTree = pNew;
		else if(key < p->data)			//作为左孩子插入p的左边
			p->lchild = pNew;	        //作为右孩子插入p的右边	
		else
			p->rchild = pNew;
		return true;
	}
	else
		return false;
}

/*
采用第一种算法从二叉排序树中删除指针p所指向的节点,
并在保持二叉排序树有序的情况下,将其左右子树重接到该二叉排序树中.
该函数主要用来被后面的删除函数调用
*/
void delete_Node1(BSTree &p)
{ 
	BSTree q,s;
	if(!p->lchild)	
	{	//如果左子树为空,则只需重接其右子树
		//这里包含了左右子树均为空的情况
		q = p;
		p = p->rchild ;
		free(q);
	}
	else if(!p->rchild)
	{	//如果右子树为空,则只需重接其左子树
		q = p;
		p = p->lchild;
		free(q);
	}
	else
	{	//如果左右子树都不为空,我们采取第一种方法来重接左右子树,
		//我们这里采取修改左子树的方法,也可以修改右子树,方法类似
		s = p->lchild;		//取待删节点的左节点

		//一直向右,最终s为待删节点的前驱节点
		//如果将各节点元素按从小到大顺序排列成一个序列,
		//则某节点的前驱节点即为序列中该节点的前面一个节点
		while(s->rchild)
			s = s->rchild;
		s->rchild = p->rchild;	//将p的右子树接为s的右子树
		q = p;
		p = p->lchild;		//将p的左子树直接接到其父节点的左子树上
		free(q);
	}
}

/*
采用第二种算法从二叉排序树中删除指针p所指向的节点,
并在保持二叉排序树有序的情况下,将其左右子树重接到该二叉排序树中.
该函数主要用来被后面的删除函数调用
*/
void delete_Node2(BSTree &p)
{
	BSTree q,s;		
	if(!p->lchild)	
	{	//如果左子树为空,则只需重接其右子树
		//这里包含了左右子树均为空的情况
		q = p;
		p = p->rchild ;
		free(q);
	}
	else if(!p->rchild)
	{	//如果右子树为空,则只需重接其左子树
		q = p;
		p = p->lchild;
		free(q);
	}
	else
	{	//如果左右子树都不为空,我们采取第二种方法来重接左右子树,
		//我们这里采取修改左子树的方法,也可以修改右子树,方法类似
		q = p;
		s = p->lchild;		//取待删节点的左节点
		while(s->rchild)		
		{	//一直向右,最终s为待删节点的前驱节点。
			//如果将各节点元素按从小到大顺序排列成一个序列,
			//则某节点的前驱节点即为序列中该节点的前面一个节点
			q = s;
			s = s->rchild;
		}
		//用s来替换待删节点p
		p->data = s->data;  
		//根据情况,将s的左子树重接到q上
		if(p != q)
			q->rchild = s->lchild;
		else
			q->lchild =s->lchild;
		free(s);
	}
}

/*
若pTree所指向的二叉排序树中查找到关键字为key的数据元素,
则删除该元素对应的节点,并返回true,否则返回false
如果要删除的恰好是根节点,则会改变根节点的值,因此要传入引用
*/
bool delete_BSTree(BSTree &pTree,int key)
{
	//不存在关键字为key的节点
	if(!pTree)
		return false;
	else
	{	
		if(key == pTree->data)       //查找到关键字为key的节点
		{
			delete_Node1(pTree);
//			delete_Node2(pTree);
			return true;			
		}
		else if(key < pTree->data)  //继续查找左子树
			return delete_BSTree(pTree->lchild,key);
		else                        //继续查找右子树
			return delete_BSTree(pTree->rchild,key);
	}
}

/*
根据所给的长为len的arr数组,按数组中元素的顺序构建一棵二叉排序树
*/
BSTree create_BSTree(int *arr,int len)
{
	BSTree pTree = NULL;
	int i;
	//按顺序逐个节点插入到二叉排序树中
	for(i=0;i<len;i++)
		insert(pTree,arr[i]);
	return pTree;	
}

/*
递归中序遍历二叉排序树,得到元素从小到大有序排列的序列
*/
void in_traverse(BSTree pTree)
{
	if(pTree)
	{
		if(pTree->lchild)
			in_traverse(pTree->lchild);
		printf("%d ",pTree->data);
		if(pTree->rchild)
			in_traverse(pTree->rchild);	
	}
}

/*
递归销毁二叉排序树
*/
void destroy_BSTree(BSTree pTree)
{
	if(pTree)
	{
		if(pTree->lchild)
			destroy_BSTree(pTree->lchild);
		if(pTree->rchild)
			destroy_BSTree(pTree->rchild);
		free(pTree);
		pTree = NULL;
	}
}

int main()
{
	int i;
	int num;
	printf("请输入节点个数:");
	scanf("%d",&num);

	//输入num个整数
	int *arr = (int *)malloc(num*sizeof(int));
	printf("请依次输入这%d个整数(必须互不相等):",num);
	for(i=0;i<num;i++)
		scanf("%d",arr+i);

	//中序遍历该二叉排序树,使数据按照从小到大的顺序输出
	BSTree pTree = create_BSTree(arr,num);
	printf("中序遍历该二叉排序树的结果:");
	in_traverse(pTree);
	printf("\n");

	//查找给定的整数
	int key;
	printf("请输入要查找的整数:");
	scanf("%d",&key);
	if(search(pTree,key))
		printf("查找成功\n");
	else 
		printf("查找不到该整数\n");

	//插入给定的整数
	printf("请输入要插入的整数:");
	scanf("%d",&key);
	if(insert(pTree,key))
	{
		printf("插入成功,插入后的中序遍历结果:");
		in_traverse(pTree);
		printf("\n");
	}
	else
		printf("插入失败,该二叉排序树中已经存在整数%d\n",key);

	//删除给定的整数
	printf("请输入要删除的整数:");
	scanf("%d",&key);
	if(delete_BSTree(pTree,key))
	{
		printf("删除成功,插入后的中序遍历结果:");
		in_traverse(pTree);
		printf("\n");
	}
	else
		printf("删除失败,该二叉排序树中不存在整数%d\n",key);

	return 0;
}

    测试结果如下:





相关推荐
攀枝花学院本科学生课程设计任务书 题 目 二叉排序与平衡二叉实现 1、课程设计的目的 使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。 使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。 3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) (1) (1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序T; (2)对二叉排序T作中序遍历,输出结果; (3)计算二叉排序T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序T,若存在x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”; (5)用数列L,生成平衡的二叉排序BT:当插入新元素之后,发现当前的二叉排序BT不是平衡的二叉排序,则立即将它转换成新的平衡的二叉排序BT; (6)计算平衡的二叉排序BT的平均查找长度,输出结果。 3、主要参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社 4、课程设计工作进度计划 第1天 完成方案设计与程序框图 第2、3天 编写程序代码 第4天 程序调试分析和结果 第5天 课程设计报告和总结 指导教师(签字) 日期 年 月 日 教研室意见: 年 月 日 学生(签字): 接受任务时间: 年 月 日 注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表 题目名称 二叉排序与平衡二叉实现 评分项目 分值 得分 评价内涵 工作 表现 20% 01 学习态度 6 遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。 02 科学实践、调研 7 通过实验、试验、查阅文献、深入生产实践等渠道获取与课程设计有关的材料。 03 课题工作量 7 按期圆满完成规定的任务,工作量饱满。 能力 水平 35% 04 综合运用知识的能力 10 能运用所学知识和技能去发现与解决实际问题,能正确处理实验数据,能对课题进行理论分析,得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献和从事其他调研;能提出并较好地论述课题的实施方案;有收集、加工各种信息及获取新知识的能力。 06 设计(实验)能力,方案的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、操作等实验工作,数据正确、可靠;研究思路清晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机进行资料搜集、加工、处理和辅助设计等。 08 对计算或实验结果的分析能力(综合分析能力、技术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果 质量 45% 09 插图(或图纸)质量、篇幅、设计(论文)规范化程度 5 符合本专业相关规范或规定要求;规范化符合本文件第五条要求。 10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。 11 创新 10 对前人工作有改进或突破,或有独特见解。 成绩 指导教师评语 指导教师签名: 年 月 日 摘要及关键字 本程序中的数据采用“形结构”作为其数据结构。具体采用的是“二叉排序”。 二叉排序(又称二叉查找):(1)若左子不空,则左子上所有节点的值均小于它的根结点的值;(2)若右子不空,则右子上所有节点均大于它的根结点的值;(3)它的左右子分别为二叉排序。 二叉平衡:若不是空,则(1)左右子都是平衡二叉;(2)左右子的深度之差的绝对值不超过1。 本次实验是利用二叉排序和平衡二叉达到以下目的:(1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序T;(2)对二叉排序T作中序遍历,输出结果;(3)计算二叉排序T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序T,若存在x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”;(5)用数列L,生成平衡的二叉排序BT:当插入新元素之后,发现当前的二叉排序BT不是平衡的二叉排序,则立即将它转换成新的平衡的二叉排序BT; (6)计算平衡的二叉排序BT的平均查找长度,输出结果。 关键字:数列L,结点,二叉排序,平衡二叉        目录 摘要…………………………………………………………………………… 3 1 绪论………………………………………………………………………… 5 1.1 课程设计的目的…………………………………………………………… 5 1.2 相关知识的阐述…………………………………………………………… 5 1.2.1一位数组的存储结构…………………………………………………… 5 1.2.2建立二叉排序……………………………………………………… 5 1.2.3中序遍历二叉………………………………………………………… 5 1.2.4平均查找长度…………………………………………………………… 6 1.2.5平均二叉(AVL)…………………………………………………… 6 1.2.6平衡因子………………………………………………………………… 7 1.2.7平衡二叉的调整方法…………………………………………………… 7 2 方案设计……………………………………………………………… 8 2.1 模块功能………………………………………………………………………8 3 算法设计…………………………………………………………………… 8 3.1 算法流程图…………………………………………………………………… 8 4 详细设计……………………………………………………………… 10 4.1 主程序………………………………………………………………… 10 4.2 定义二叉结构……………………………………………………………… 11 4.3 建立二叉…………………………………………………………………… 11 4.3.1二叉排序的查找…………………………………………………………11 4.3.2二叉排序的插入…………………………………………………………11 4.4 中序遍历…………………………………………………………………12 4.5 平均查找长度…………………………………………………………………12 4.6 删除节点…………………………………………………………………12 4.7 判断平衡二叉……………………………………………………………… 13 5 调试分析………………………………………………………………………… 14 5.1 时间复杂度的分析………………………………………………………………14 5.2 运行结果………………………………………………………………… 14 5.3 结果分析………………………………………………………………… 15 6 课程设计总结…………………………………………………………………… 16 参考文献………………………………………………………………………… 17 1 绪论 1.1 课程设计的目的 (1)使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。 (2)使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。 (3)使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。 1.2 相关知识的阐述 1.2.1 一维数组的存储结构 建立二插排序,首先用一个一维数组记录下读入的数据,然后再用边查找边插入的方式将数据一一对应放在完全二叉相应的位置,为空的结点用“0” 补齐。 1.2.2 建立二叉排序 二叉排序是一种动态表。其特点是:的结构通常不是一次生成的,而是在查找过程中,当中不存在关键字等于给定值的节点时再进行插入。新插入的结点一定是一个新添加的叶子节点,并且是查找不成功时查找路径上访问的最后一个结点的左孩子或右孩子结点。 插入算法: 首先执行查找算法,找出被插结点的父亲结点; 判断被插结点是其父亲结点的左、右儿子。将被插结点作为叶子结点插入; 若二叉为空,则首先单独生成根结点。 注意:新插入的结点总是叶子结点。 1.2.3 中序遍历二叉 中序遍历二叉算法的框架是: 若二叉为空,则空操作; 否则(1)中序遍历左子(L); (2)访问根结点(V); (3)中序遍历右子(R)。 中序遍历二叉也采用递归函数的方式,先访问左子2i,然后访问根结点i,最后访问右子2i+1.先向左走到底再层层返回,直至所有的结点都被访问完毕。 1.2.4 平均查找长度 计算二叉排序的平均查找长度时,采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。平均查找长度就等于s/i(i为中结点的总个数)。  假设在有n(n>=1)个关键字的序列中,i个关键字小于第一个关键字,n-i-1个关键字大于第一个关键字,则由此构造而得的二叉排序在n个记录的查找概率相等的情况下,其平均查找长度为:          ASL(n,i)=[1+i*(P(i)+1)+(n-i-1)(P(n-i-1)+1)]/n 其中P(i)为有i个结点的二叉排序的平均查找长度,则P(i)+1为查找左子中每个关键字时所用比较次数的平均值,P(n-i-1)+1为查找右子中每个关键字时所用比较次数的平均值。又假设表中n个关键字的排列是“随机”的,即任一个关键字在序列中将是第1个,或第2个,…,或第n个的概率相同,则可对上式从i等于0至n-1取平均值。最终会推导出:          当n>=2时,ASL(n)<=2(1+1/n)ln(n) 由此可见,在随机的情况下,二叉排序的平均查找长度和log(n)是等数量级的。 另外,有n个结点的二叉排序其判定不是惟一的。对于有同样一组结点的表,由于结点插入的先后次序不同,所构成的二叉排序的形态和深度也可能不同。 而在二叉排序上进行查找时的平均查找长度和二叉的形态有关:  ①在最坏情况下,二叉排序是通过把一个有序表的n个结点依次插入而生成的,此时所得的二叉排序蜕化为棵深度为n的单支,它的平均查找长度和单链表上的顺序查找相同,亦是(n+1)/2。  ②在最好情况下,二叉排序在生成的过程中,的形态比较匀称,最终得到的是一棵形态与二分查找的判定相似的二叉排序,此时它的平均查找长度大约是lgn。  ③插入、删除和查找算法的时间复杂度均为O(lgn)。 1.2.5 平衡二叉( AVL ) ①平衡二叉(Balanced Binary Tree)是指中任一结点的左右子的高度大致相同。     ②任一结点的左右子的高度均相同(如满二叉),则二叉是完全平衡的。通常,只要二叉的高度为O(1gn),就可看作是平衡的。     ③平衡的二叉排序指满足BST性质的平衡二叉。     ④AVL中任一结点的左、右子的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL的高度约为1.44lgn。而完全平衡的二叉高度约为lgn,AVL是最接近最优的。 1.2.6 平衡因子 二叉上任一结点的左子深度减去右子的深度称为该结点的平衡因子,易知平衡二叉中所有结点的因子只可能为0,-1和1。 平衡二叉排序的在平衡因子绝对值等于2时开始调整到绝对值为1或0,在平衡因子绝对值为2时,二叉排序会出现四种不同的情况的形,因此这时需要分别单独讨论来降低平衡因子。 1.2.7 平衡二叉的调整方法   平衡二叉是在构造二叉排序的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序的平衡性,若是,则找出其中的最小不平衡子,在保持二叉排序特性的前提下,调整最小不平衡子中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子。具体步骤如下: (1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值均不超过1,则平衡二叉没有失去平衡,继续插入结点; (2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子的根结点; (3)判断新插入的结点与最小不平衡子的根结点的关系,确定是哪种类型的调整; (4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或LR型,则需应用扁担原理旋转两次,第一次最小不平衡子的根结点先不动,调整插入结点所在子,第二次再调整最小不平衡子,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突; (5)计算调整后的平衡二叉中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后的平衡二叉中是否存在平衡因子大于1的结点。 2 方案设计 2.1 模块功能 1.建立二叉:要求以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序T。 2.中序遍历并输出结果:要求将第一步建立的二叉进行中序遍历,并将结果输出。 3.平均查找长度并输出:要求计算二叉排序T查找成功的平均查找长度,输出结果。 4.删除节点:要求输入元素x,查找二叉排序T,若存在x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”。 5.生成平衡二叉:要求用数列L,生成平衡的二叉排序BT:当插入新元素之后,发现当前的二叉排序BT不是平衡的二叉排序,则立即将它转换成新的平衡的二叉排序BT; 6.平均查找长度:计算平衡的二叉排序BT的平均查找长度,输出结果。 3 算法设计 3.1 算法流程图 建立二叉流程图: YES NO 主程序流程图: 中序遍历流程图: 删除节点流程图: 4 详细设计 4.1 主程序 void main() { node T=NULL; int num; int s=0,j=0,i=0; int ch=0; node p=NULL; printf("请输入一组数字并输入0为结束符:"); do{ scanf("%d",&num); if(!num) printf("你成功完成了输入!\n"); else insertBST(&T,num); }while(num); printf("\n\n---操作菜单---\n"); printf("\n 0: 退出" ); printf("\n 1: 中序遍历"); printf("\n 2: 平均查找长度"); printf("\n 3: 删除"); printf("\n 4: 判断是否是平衡二叉"); while(ch==ch) { printf("\n 选择操作并继续:"); scanf("%d",&ch); switch(ch){ case 0: exit(0); /*0--退出*/ case 1: printf(" 中序遍历结果是:\n "); inorderTraverse(&T); break; case 2: s=0;j=0;i=0; calculateASL(&T,&s,&j,i); printf(" ASL=%d/%d",s,j); break; case 3: printf(" 请输入你想删除的数字:"); scanf("%d",&num); if(searchBST(T,num,NULL,&p)) { T=Delete(T,num); printf(" 你已成功删除该数字!\n "); inorderTraverse(&T); else printf(" 没有你想要删除的节点 %d!",num); break; case 4: i=0; balanceBST(T,&i); if(i==0) printf(" OK!这是平衡二叉!"); else printf(" NO!"); break; default: printf("你的输入有误!请重新输入!\n"); break; } } } 4.2 定义二叉结构 #include<stdio.h> typedef struct Tnode { int data; struct Tnode *lchild,*rchild; }*node,BSTnode; 4.3 建立二叉 4.3.1 二叉排序的查找 searchBST(node t,int key,node f,node *p){ /*在根指针t所指二叉排序中递归地查找其关键字等于key的数据元素,若查找成功,则指针p指向该数据元素节点,并返回(1),否则指针p指向查找路径上访问的最后一个节点并返回(0),指针f指向t的双亲,其初始调用值为NULL*/ if(!t) {*p=f;return (0);} /*查找不成功*/ else if(key==t->data) {*p=t;return (1);} /*查找成功*/ else if(key<t->data) searchBST(t->lchild,key,t,p); /*在左子中继续查找*/ else searchBST(t->rchild,key,t,p); /*在右子中继续查找*/ } 4.3.2 二叉排序的插入 insertBST(node *t,int key){ /*当二叉排序t中不存在关键字等于key的数据元素时,插入key并返回(1),否则返回(0)*/ node p=NULL,s=NULL; if(!searchBST(*t,key,NULL,&p)) /*查找不成功 */ { s=(node)malloc(sizeof(BSTnode)); s->data=key; s->lchild=s->rchild=NULL; if(!p) *t=s; /*被插入节点*s为新的根节点*/ else if(key<p->data) p->lchild=s; /*被插节点*s为左孩子*/ else p->rchild=s; /*被插节点*s为右孩子*/ return (1); } else return (0); /*中已有关键字相同的节点,不再插入*/ } 4.4 中序遍历 inorderTraverse(node *t) /*中序遍历*/ { if(*t){ if(inorderTraverse(&(*t)->lchild)) { printf("%d ",(*t)->data); if(inorderTraverse(&(*t)->rchild)); } } else return(1); } 4.5 平均查找长度 calculateASL(node *t,int *s,int *j,int i) /*计算平均查找长度*/ {if(*t){ i++; *s=*s+i; if(calculateASL(&(*t)->lchild,s,j,i)) { (*j)++; if(calculateASL(&(*t)->rchild,s,j,i)) {i--; return(1);} } } else return(1); } 4.6 删除节点 node Delete(node t,int key) { /*若二叉排序t中存在关键字等于key的数据元素时,则删除该数据元素节点 */ node p=t,q=NULL,s,f; while(p!=NULL) { if(p->data==key) break; q=p; if(p->data>key) p=p->lchild; else p=p->rchild; } if(p==NULL) return t; if(p->lchild==NULL) { if(q==NULL) t=p->rchild; else if(q->lchild==p) q->lchild=p->rchild; else q->rchild=p->rchild; free(p); } else{ f=p; s=p->lchild; while(s->rchild) { f=s; s=s->rchild; } if(f==p) f->lchild=s->lchild; else f->rchild=s->lchild; p->data=s->data; free (s); } return t; } 4.7 判断平衡二叉 int balanceBST(node t,int *i) /*判断平衡二叉*/ { int dep1,dep2; if(!t) return(0); else { dep1=balanceBST(t->lchild,i); dep2=balanceBST(t->rchild,i); } if((dep1-dep2)>1||(dep1-dep2)<-1) *i=dep1-dep2; if(dep1>dep2) return(dep1+1); else return(dep2+1); } 5 调试分析 5.1 时间复杂度的分析 为了保证二叉排序的高度为lgn,从而保证然二叉排序实现的插入、删除和查找等基本操作的时间复杂度为O(lgn)。 5.2 运行结果 图5.1.1 调试界面 在程序调试过程当中,编译时并没有报错,但是运行时总是出错,在查阅资料和同学的帮助下,发现程序未对数组初始化。添加数组初始化代码: s=(node)malloc(sizeof(BSTnode)) 输入一组数列,以结0结束: 图5.2.2运行界面一 中序遍历: 图5.2.3运行界面二 计算平均查找长度 图5.2.4运行界面三 删除已有结点: 图5.2.5运行界面四 删除失败: 图5.2.6运行界面五 判断是否是平衡二叉: 图5.2.7运行界面六 5.3 结果分析 通过运行程序和严密的求证,运行结果无误,不过对于转换平衡二叉和平衡二叉平均查找长度未能实现,同时也无法实现图像显示。 6 课程设计总结 在这一周的课程设计中,其实对我来说还是收获颇多。这不光提高了我的程序设计能力,更为我的就业增加了筹码。对我们来说,独立完成这样课程设计是比较困难,其中包括模块的组成分析和模块功能的实现。最后我不得不从网上下载源程序,借助课本,困难地将几个模块串起来。最后终于完成了自己的课程设计。 这次实验中我也出现过一些比较严重的错误。在用一维数组顺序表结构编写程序时我错误的运用静态链表来实现函数功能。这是我对基本概念理解的模糊不清造成的。我原以为只要采用一维数组作为存储结构它就一定也是顺序表结构,而实质上这根本是两个不相干的概念。后来在同学的指点下我意识到自己的错误。不过收获也很不少。至少我又练习了运用静态链表来实现同样的功能,同时我也发现两者在很多函数上是互通的,只需稍作修改即可移植。 另外程序的不足之处是不能实现对0这个数字的存储,可以通过改变数字的存储结构方式来实现,如使用二叉链表来作为数据的存储结构,即可实现该功能。还有就是可能自己学的还不够,对于最后两个要求未能完成,不得不说这是自己学艺不精。 现在觉得以前我对数据结构的认识是那么的肤浅,因此我下定决心寒假一定好好的把数据结构复习一遍。而且本次课程设计不光增强了我程序调试的能力,还有在面对一个较大的程序要冷静,不要浮躁,先分析模块要实现的功能,再把模块划分,最后到一个一个得模块实现,并且要不断地练习,这样,一个大的程序对我来说将不成问题。 参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页