关系抽取数据集评价方法scorer.py解读

本文详细解读了关系抽取数据集的评价方法scorer.py,特别是针对TP、FP、FN和TN的概念。它计算精确率、召回率和F1-score,用于评估模型性能。scorer.py关注的是预测结果与实际标签一致的关系样本,不统计no_relation的情况,以防止数据偏斜导致的错误评估。
摘要由CSDN通过智能技术生成

真实关系的列表存在key中,预测关系的列表存在prediction中,从dev数据集中获取样本,以tacred为例,包含两万多条记录。以真实label存储,不是one-hot。

在该评价方法中,也有TP,FP,TN,FN的概念。回顾一下这四个变量代表什么意思:

  • TP:将正类预测为正类的样本个数,预测对了关系的样本个数
  • FN:将正类预测为负类的样本个数,实际有关系但没预测对
  • FP:将负类预测为正类的样本个数,预测有关系但没预测对
  • TN:将负类预测为负类的样本个数,预测没关系预测对了,不统计
    positive就代表了实体之间存在关系的样本,negative则代表不存在关系的样本。
def score(key, prediction, verbose=False):
    correct_by_relation = Counter()
    guessed_by_relation = Counter()
    gold_by_relation    = Counter()

    # Loop over the data to compute a score
    for row in range(len(key)):
        go
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>