口诀: 冒择路(入)兮(希尔)快归堆
冒失的选择一条道路进去时,就很快的走到坟墓
冒泡、选择、插入、希尔、快速、归并、堆排序
让我们先定义一个整型数组a[n],下面用五种方法对其从小到大排序。
(1)“冒泡法”
冒泡法大家都较熟悉。其原理为从a[0]开始,依次将其和后面的元素比较,若a[0]>a[i ],则交换它们,一直比较到a[n]。同理对a[1],a[2],...a[n-1]处理,即完成排序。下面列出其代码:
void bubble(int *a,int n) /*定义两个参数:数组首地址与数组大小*/
{
int i,j,temp;
for(i=0;i<n-1;i++)
for(j=i+1;j<n;j++) /*注意循环的上下限*/
if(a[i ]>a[j]) {
temp=a[ i ];
a[ i ]=a[ j ];
a[ j ]=temp;
}
}
冒泡法原理简单,但其缺点是交换次数多,效率低。
下面介绍一种源自冒泡法但更有效率的方法“选择法”。
(2)“选择法”
选择法循环过程与冒泡法一致,它还定义了记号k=i,然后依次把a[k]同后面元素比较,若a[k]>a[j],则使k=j.最后看看k=i是否还成立,不成立则交换a[k],a[i ],这样就比冒泡法省下许多无用的交换,提高了效率。
void choise(int *a,int n)
{
int i,j,k,temp;
for(i=0;i<n-1;i++) {
k=i; /*给记号赋值*/
for(j=i+1;j<n;j++)
if(a[k]>a[j ]) k=j; /*是k总是指向最小元素*/
if(i!=k) { /*当k!=i是才交换,否则a[i ] 即为最小*/
temp=a[i ];
a[i ]=a[k];
a[k]=temp;
}
}
}
选择法比冒泡法效率更高,但说到高效率,非“快速法”莫属,现在就让我们来了解它。
(3)“快速法”
快速法定义了三个参数,(数组首地址*a,要排序数组起始元素下标i,要排序数组结束元素下标j). 它首先选一个数组元素(一般为a[(i +j)/2],即中间元素)作为参照,把比它小 的元素放到它的左边,比它大的放在右边。然后运用递归,在将它左,右两个子数组排序,最后完成整个数组的排序。下面分析其代码:
void quick(int *a,int i,int j)
{
int m,n,temp;
int k;
m=i;
n=j;
k=a[(i +j)/2]; /*选取的参照*/
do {
while(a[m]<k&&m<j) m++; /* 从左到右找比k大的元素*/
while(a[n]>k&&n>i) n--; /* 从右到左找比k小的元素*/
if(m<=n) { /*若找到且满足条件,则交换*/
temp=a[m];
a[m]=a[n];
a[n]=temp;
m++;
n--;
}
}while(m<=n);
if(m<j) quick(a,m,j); /*运用递归*/
if(n>i) quick(a,i,n);
}
(4)“插入法”
插入法是一种比较直观的排序方法。它首先把数组头两个元素排好序,再依次把后面的元素插入适当的位置。把数组元素插完也就完成了排序。
void insert(int *a,int n)
{
int i,j,temp;
for(i=1;i<n;i++) {
temp=a[i ]; /*temp为要插入的元素*/
j=i-1;
while(j>=0&&temp<a[j]) { /*从a[i -1]开始找比a[i ]小的数,同时把数组元素向后移*/
a[j+1]=a[j ];
j--;
}
a[j+1]=temp; /*插入*/
}
}
(5)“shell法”
shell法是一个叫 shell 的美国人与1969年发明的。它首先把相距k(k>=1)的那几个元素排好序,再缩小k值(一般取其一半),再排序,直到k=1时完成排序。下面让我们来分析其代码:
void shell(int *a,int n)
{
int i,j,k,x;
k=n/2; /*间距值*/
while(k>=1) {
for(i=k;i<n;i++) {
x=a[i ];
j=i-k;
while(j>=0&&x<a[j]) {
a[j+k]=a[j ];
j-=k;
}
a[j+k]=x;
}
k/=2; /*缩小间距值*/
}
}
上面我们已经对几种排序法作了介绍,现在让我们写个主函数检验一下。
#include<stdio.h>
/*别偷懒,下面的"..."代表函数体,自己加上去哦!*/
void bubble(int *a,int n)
{
...
}
void choise(int *a,int n)
{
...
}
void quick(int *a,int i,int j)
{
...
}
void insert(int *a,int n)
{
...
}
void shell(int *a,int n)
{
...
}
/*为了打印方便,我们写一个print吧。*/
void print(int *a,int n)
{
int i;
for(i=0;i<n;i++)
printf("%5d",a[i ]);
printf("\n");
}
main()
{ /*为了公平,我们给每个函数定义一个相同数组*/
int a1[]={13,0,5,8,1,7,21,50,9,2};
int a2[]={13,0,5,8,1,7,21,50,9,2};
int a3[]={13,0,5,8,1,7,21,50,9,2};
int a4[]={13,0,5,8,1,7,21,50,9,2};
int a5[]={13,0,5,8,1,7,21,50,9,2};
printf("the original list:");
print(a1,10);
printf("according to bubble:");
bubble(a1,10);
print(a1,10);
printf("according to choise:");
choise(a2,10);
print(a2,10);
printf("according to quick:");
quick(a3,0,9);
print(a3,10);
printf("according to insert:");
insert(a4,10);
print(a4,10);
printf("according to shell:");
shell(a5,10);
print(a5,10);
}
再补充个堆排序
堆排序1、 堆排序定义
n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
注意:
①堆中任一子树亦是堆。
②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
3、堆排序特点
堆排序(HeapSort)是一树形选择排序。
堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。
4、堆排序与直接插入排序的区别
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
5、堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
(3)堆排序的算法:
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元
int i;
BuildHeap(R); //将R[1-n]建成初始堆
for(i=n;i>1;i--){ //对当前无序区R[1..i ]进行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[ i ];R[i ]=R[0]; //将堆顶和堆中最后一个记录交换
Heapify(R,1,i-1); //将R[1.. i-1]重新调整为堆,仅有R[1]可能违反堆性质
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函数的实现
因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。
① Heapify函数思想方法
每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i ]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。
"筛选法"调整堆
R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。因此,有人将此方法称为"筛选法"。
具体的算法【参见教材】
②BuildHeap的实现
要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。
显然只有一个结点的树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。这样,我们只需依次将以序号为 , -1,…,1的结点作为根的子树都调整为堆即可。
具体算法【参见教材】。
5、大根堆排序实例
对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见【动画演示】。
6、 算法分析
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。
由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
堆排序是就地排序,辅助空间为O(1),
它是不稳定的排序方法。
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Java 常用排序算法/程序员必须掌握的 8大排序算法
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看 8种排序之间的关系:
1.直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n 个数插到前面的有序数中,使得这 n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
(3)用java实现
[java] view plaincopy
1. package com.njue;
2.
3. publicclass insertSort {
4.
5. public insertSort(){
6. inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,
34,15,35,25,53,51};
7. int temp=0;
8. for(int i=1;i<a.length;i++){
9. int j=i-1;
10. temp=a[i];
11. for(;j>=0&&temp<a[j];j--){
12. a[j+1]=a[j]; //将大于temp 的值整体后移一个单位
13. }
14. a[j+1]=temp;
15. }
16.
17. for(int i=0;i<a.length;i++){
18. System.out.println(a[i]);
19. }
20. }
2. 希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量 d(n/2,n为要排序数的个数)分成若
干组,每组中记录的下标相差 d.对每组中全部元素进行直接插入排序,然后再用一个较小
的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到 1 时,进行直接
插入排序后,排序完成。
(2)实例:
(3)用java实现
[java] view plaincopy
1. publicclass shellSort {
2.
3. publicshellSort(){
4.
5. int a[]={1,54,6,3,78,34,12,45,56,100};
6. double d1=a.length;
7. int temp=0;
8.
9. while(true){
10. d1= Math.ceil(d1/2);
11. int d=(int) d1;
12. for(int x=0;x<d;x++){
13.
14. for(int i=x+d;i<a.length;i+=d){
15. int j=i-d;
16. temp=a[i];
17. for(;j>=0&&temp<a[j];j-=d){
18. a[j+d]=a[j];
19. }
20. a[j+d]=temp;
21. }
22. }
23.
24. if(d==1){
25. break;
26. }
27.
28. for(int i=0;i<a.length;i++){
29. System.out.println(a[i]);
30. }
31. }
3.简单选择排序
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一
个数比较为止。
(2)实例:
(3)用java实现
[java] view plaincopy
1. publicclass selectSort {
2.
3. public selectSort(){
4. int a[]={1,54,6,3,78,34,12,45};
5. int position=0;
6. for(int i=0;i<a.length;i++){
7. int j=i+1;
8. position=i;
9. int temp=a[i];
10. for(;j<a.length;j++){
11. if(a[j]<temp){
12. temp=a[j];
13. position=j;
14. }
15. }
16. a[position]=a[i];
17. a[i]=temp;
18. }
19.
20. for(int i=0;i<a.length;i++)
21. System.out.println(a[i]);
22. }
23. }
4, 堆排序
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或
(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的
定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观
地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一
棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然
后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类
推,直到只有两个节点的堆,并对它们作交换,最后得到有 n个节点的有序序列。从算法
描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所
以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
剩余结点再建堆,再交换踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
[java] view plaincopy
1. import java.util.Arrays;
2.
3. publicclass HeapSort {
4. inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,
34,15,35,25,53,51};
5. public HeapSort(){
6. heapSort(a);
7. }
8.
9. public void heapSort(int[] a){
10. System.out.println("开始排序");
11. int arrayLength=a.length;
12. //循环建堆
13. for(int i=0;i<arrayLength-1;i++){
14. //建堆
15. buildMaxHeap(a,arrayLength-1-i);
16. //交换堆顶和最后一个元素
17. swap(a,0,arrayLength-1-i);
18. System.out.println(Arrays.toString(a));
19. }
20. }
21.
22.
23.
24. private void swap(int[] data, int i, int j) {
25. // TODO Auto-generated method stub
26. int tmp=data[i];
27. data[i]=data[j];
28. data[j]=tmp;
29. }
30.
31. //对data 数组从0到lastIndex 建大顶堆
32. privatevoid buildMaxHeap(int[] data, int lastIndex) {
33. // TODO Auto-generated method stub
34. //从lastIndex 处节点(最后一个节点)的父节点开始
35.
36. for(int i=(lastIndex-1)/2;i>=0;i--){
37. //k 保存正在判断的节点
38. int k=i;
39. //如果当前k节点的子节点存在
40. while(k*2+1<=lastIndex){
41. //k 节点的左子节点的索引
42. int biggerIndex=2*k+1;
43. //如果biggerIndex 小于lastIndex,即biggerIndex+1 代表的k 节点的
右子节点存在
44. if(biggerIndex<lastIndex){
45. //若果右子节点的值较大
46. if(data[biggerIndex]<data[biggerIndex+1]){
47. //biggerIndex 总是记录较大子节点的索引
48. biggerIndex++;
49. }
50. }
51.
52. //如果k节点的值小于其较大的子节点的值
53. if(data[k]<data[biggerIndex]){
54. //交换他们
55. swap(data,k,biggerIndex);
56. //将biggerIndex 赋予k,开始while 循环的下一次循环,重新保证k
节点的值大于其左右子节点的值
57. k=biggerIndex;
58. }else{
59. break;
60. }
61. }
62. }
63. }
64. }
5.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对
相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的
数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
(3)用java实现
[java] view plaincopy
1. publicclass bubbleSort {
2.
3. publicbubbleSort(){
4. inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23
,34,15,35,25,53,51};
5. int temp=0;
6. for(int i=0;i<a.length-1;i++){
7. for(int j=0;j<a.length-1-i;j++){
8. if(a[j]>a[j+1]){
9. temp=a[j];
10. a[j]=a[j+1];
11. a[j+1]=temp;
12. }
13. }
14. }
15.
16. for(int i=0;i<a.length;i++){
17. System.out.println(a[i]);
18. }
19. }
6.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,
将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其
排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:
(3)用java实现
[java] view plaincopy
1. publicclass quickSort {
2.
3. inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34
,15,35,25,53,51};
4. publicquickSort(){
5. quick(a);
6. for(int i=0;i<a.length;i++){
7. System.out.println(a[i]);
8. }
9. }
10. publicint getMiddle(int[] list, int low, int high) {
11. int tmp =list[low]; //数组的第一个作为中轴
12. while (low < high){
13. while (low < high&& list[high] >= tmp) {
14. high--;
15. }
16.
17. list[low] =list[high]; //比中轴小的记录移到低端
18. while (low < high&& list[low] <= tmp) {
19. low++;
20. }
21.
22. list[high] =list[low]; //比中轴大的记录移到高端
23. }
24. list[low] = tmp; //中轴记录到尾
25. return low; //返回中轴的位置
26. }
27.
28. publicvoid _quickSort(int[] list, int low, int high) {
29. if (low < high){
30. int middle =getMiddle(list, low, high); //将list 数组进行一分
为二
31. _quickSort(list, low, middle - 1); //对低字表进行递归排
序
32. _quickSort(list,middle + 1, high); //对高字表进行递归排
序
33. }
34. }
35.
36. publicvoid quick(int[] a2) {
37. if (a2.length > 0) { //查看数组是否为空
38. _quickSort(a2,0, a2.length - 1);
39. }
40. }
41. }
7、归并排序
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有
序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并
为整体有序序列。
(2)实例:
(3)用java实现
[java] view plaincopy
1. import java.util.Arrays;
2.
3. publicclass mergingSort {
4.
5. inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,1
5,35,25,53,51};
6.
7. publicmergingSort(){
8. sort(a,0,a.length-1);
9. for(int i=0;i<a.length;i++)
10. System.out.println(a[i]);
11. }
12.
13. publicvoid sort(int[] data, int left, int right) {
14. // TODO Auto-generatedmethod stub
15. if(left<right){
16. //找出中间索引
17. int center=(left+right)/2;
18. //对左边数组进行递归
19. sort(data,left,center);
20. //对右边数组进行递归
21. sort(data,center+1,right);
22. //合并
23. merge(data,left,center,right);
24. }
25.
26. }
27.
28. publicvoid merge(int[] data, int left, int center, int right) {
29. // TODO Auto-generatedmethod stub
30. int [] tmpArr=newint[data.length];
31. int mid=center+1;
32. //third 记录中间数组的索引
33. int third=left;
34. int tmp=left;
35. while(left<=center&&mid<=right){
36. //从两个数组中取出最小的放入中间数组
37. if(data[left]<=data[mid]){
38. tmpArr[third++]=data[left++];
39. }else{
40. tmpArr[third++]=data[mid++];
41. }
42.
43. }
44.
45. //剩余部分依次放入中间数组
46. while(mid<=right){
47. tmpArr[third++]=data[mid++];
48. }
49.
50. while(left<=center){
51. tmpArr[third++]=data[left++];
52. }
53.
54. //将中间数组中的内容复制回原数组
55. while(tmp<=right){
56. data[tmp]=tmpArr[tmp++];
57. }
58. System.out.println(Arrays.toString(data));
59. }
60. }
8、基数排序
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面
补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成
以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
[java] view plaincopy
1. import java.util.ArrayList;
2. import java.util.List;
3.
4. public class radixSort {
5. inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18
,23,34,15,35,25,53,51};
6. public radixSort(){
7. sort(a);
8. for(inti=0;i<a.length;i++){
9. System.out.println(a[i]);
10. }
11. }
12. public void sort(int[] array){
13. //首先确定排序的趟数;
14. int max=array[0];
15. for(inti=1;i<array.length;i++){
16. if(array[i]>max){
17. max=array[i];
18. }
19. }
20. int time=0;
21. //判断位数;
22. while(max>0){
23. max/=10;
24. time++;
25. }
26.
27. //建立10个队列;
28. List<ArrayList> queue=newArrayList<ArrayList>();
29. for(int i=0;i<10;i++){
30. ArrayList<Integer>queue1=new ArrayList<Integer>();
31. queue.add(queue1);
32. }
33.
34. //进行time 次分配和收集;
35. for(int i=0;i<time;i++){
36. //分配数组元素;
37. for(intj=0;j<array.length;j++){
38. //得到数字的第time+1 位数;
39. int x=array[j]%(int)Math.pow(10,i+1)/(int)Math.pow(10, i);
40. ArrayList<Integer>queue2=queue.get(x);
41. queue2.add(array[j]);
42. queue.set(x, queue2);
43. }
44. int count=0;//元素计数器;
45. //收集队列元素;
46. for(int k=0;k<10;k++){
47. while(queue.get(k).size()>0){
48. ArrayList<Integer>queue3=queue.get(k);
49. array[count]=queue3.get(0);
50. queue3.remove(0);
51. count++;
52. }
53. }
54. }
55. }
56. }
import java.io.*;
public class Paixu {
// 冒泡排序法
public void Maopao(int a[]) {
for (int i = 1; i < a.length; i++) {
for (int j = 0; j < a.length - i; j++) {
if (a[j] > a[j + 1]) {
int temp = a[j + 1];
a[j + 1] = a[j];
a[j] = temp;
}
}
}
System.out.println("\n" + "采用冒泡排序法:");
}
// 插入排序法:
public void Charu(int a[]) {
for (int i = 1; i < a.length; i++) {
for (int j = 0; j < i; j++) {
if (a[j] > a[i]) {
int temp = a[i];
for (int k = i; k > j; k--) {
a[k] = a[k--];
}
a[j] = temp;
}
}
}
System.out.println("\n" + "采用插入排序法:");
}
// 选择排序法:
public void Xuanze(int a[]) {
for (int i = 0; i < a.length; i++) {
int position = i;
for (int j = i + 1; j < a.length; j++) {
if (a[position] > a[j]) {
int temp = a[position];
a[position] = a[j];
a[j] = temp;
}
}
}
System.out.println("\n" + "采用选择排序法:");
}
public void Print(int a[]) {
System.out.println("从小到大排序结果为:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + ",");
}
}
public static void main(String[] args) {
int a[] = new int[5];
Paixu px = new Paixu();
BufferedReader buf = new BufferedReader(
new InputStreamReader(System.in));
System.out.println("请输入五个整数:");
for (int i = 0; i < a.length; i++) {
try {
String s = buf.readLine();
int j = Integer.parseInt(s);
a[i] = j;
} catch (Exception e) {
System.out.println("出错了!必须输入整数,请重新输入!");
i--;
}
}
System.out.println("您输入的整数依次为:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + ",");
}
System.out.println("\n" + "-------------");
px.Maopao(a); // 调用冒泡算法
px.Print(a);
System.out.println("\n" + "-------------");
px.Charu(a); // 调用插入算法
px.Print(a);
System.out.println("\n" + "-------------");
px.Xuanze(a); // 调用选择算法
px.Print(a);
}
}
Java实现二分查找
现在复习下
import java.util.*;
public class BinarySearch {
public static void main(String[] args) {
ArrayList<Integer> a = new ArrayList<Integer>();
addIntegerInSequence(a,1,10);
print(a);
int pos = binarySearch(a,10);
if ( pos != -1 )
{
System.out.print("Element found: " + pos);
}
else
{
System.out.print("Element not found");
}
}
/**
* 二分查找法
* @param a
* @param value 待查找元素
* @return
*/
public static int binarySearch(ArrayList<Integer> a, int value)
{
int size = a.size();
int low = 0 , high = size - 1;
int mid;
while (low <= high)
{
mid = (low + high) / 2;
if ( a.get(mid) < value )
{
low = low + 1;
}
else if ( a.get(mid) > value )
{
high = high - 1;
}
else
{
return mid;
}
}
return -1;
}
/**
* 填充顺序元素到数组
* @param a
* @param begin 开始元素
* @param size 大小
*/
public static void addIntegerInSequence(ArrayList<Integer> a, int begin, int size)
{
for (int i = begin; i < begin + size; i++)
{
a.add(i);
}
}
/**
* 打印数组
* @param a
*/
public static void print(ArrayList<Integer> a)
{
Iterator<Integer> i = a.iterator();
while (i.hasNext())
{
System.out.print(i.next() + " ");
}
System.out.println("");
}
}
/////
JAVA 库中的二分查找使用非递归方式实现,返回结果与前面写的有所不同:找不到时返回的是负数,但不一定是-1
private static int binarySearch0(int[] a, int fromIndex, int toIndex,
int key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}