Determine whether an integer is a palindrome. Do this without extra space.(source)
判断一个数字是否为回文数,并且不使用额外的存储空间。
“回文”是指正读反读都能读通的句子,那么回文数,就很容易理解,就是指一个数正反读的值是相同的。还有一个要求是不要使用额外的存储空间。
Hints:
要将一个数的最高位与最低位比较,取出一个数的最低位容易(x%10),但要得到高位却很难。
Solution 1:
首先得知道一个负数的处理方法,比如-1是不是一个回文数,在这里我们认为负数都不是回文数。
直观的讲,判断一个回文数可以把该数reverse,如下:
int reverse(int num) {
assert(num >= 0); // 只考虑非负数
int rev = 0;
while (num != 0) {
rev = rev*10 + num%10;
num /= 10;
}
return rev;
}
然后与原数比较,return reverse(num)==num; 该算法使用了一个额外的存储空间,并且没有考虑到越界的问题,例如在C++中INT_MAX=2^31-1 = 2147483647的回文数为7463847412就越界了,因此该方法不是很好的方法。
Solution 2:
另外可以将数字转换成字符串之后,判断一个字符串是否为回文。
string int2str(int x)
{
string ret;
if( x == 0 )
ret.push_back('0');
while( x )
{
ret.push_back('0' + x%10);
x /= 10;
}
reverse(ret.begin(), ret.end()); // 字符串逆序
return ret;
}
// 判断回文字符串
bool isPalindrome(string str) {
int low = 0;
int high = str.length()-1;
while(low < high)
{
if(str[low] != str[high])
return false;
low++;
high--;
}
return true;
}
该方法需要与数字长度相同的字节数的存数空间,也不是一个零存储空间的算法。
Solution 3:
利用高位和低位相等的思想,不会越界,却需要额外的存储空间。
bool isPalindrome(int x) {
if (x < 0) return false;
int div = 1;
while (x / div >= 10) {
div *= 10; // div的最高位为1,长度与x相同
}
while (x != 0) {
int h = x / div; // x的最高位
int l = x % 10; // x的最低位
if (h != l) return false;
x = (x % div) / 10; // 去掉x的最高位和最低位
div /= 100;
}
return true;
}
Solution 4:
零存储方法。利用递归的思想,利用栈内存,达到了零存储的目的。
bool isPalindrome(int x, int &y) {
// y为必须为引用和指针型可改变的变量
if (x < 0) return false;
if (x == 0) return true;
if (isPalindrome(x/10, y) && (x%10 == y%10)) {
// 每次执行到 x%10 == y%10 的时候 x 为前i位,y表示前(n+1-i)位
y /= 10;
return true;
} else {
return false;
}
}
bool isPalindrome(int x) {
return isPalindrome(x, x);
}