滤波(filtering)与卷积(convolution)的区别

  • 滤波(filtering)

滤波操作就是图像对应像素与掩膜(mask)的乘积之和。

滤波步骤:

  1. 对原始图像的边缘进行某种方式的填充(一般为0填充)。
  2. 将掩膜划过整幅图像,计算图像中每个像素点的滤波结果。
滤波计算公式:

如下图,有一张图片和一个掩膜。


像素(i,j)的滤波后结果可以根据以下公式计算:


其中,G(i,j)是图片中(i,j)位置像素经过滤波后的像素值。

当掩膜中心m5位置移动到图像(i,j)像素位置时,图像(i,j)位置像素称为锚点

举例:


滤波后的图像大小不变


  • 卷积(convolution)
卷积操作也是卷积核与图像对应位置的乘积和。但是,卷积操作在做乘积之前,需要先将卷积核翻转180度,之后再做乘积。
卷积步骤:
  1. 180度翻转卷积核。
  2. 不做边界填充,直接对图像进行相应位置乘积和。
卷积后图像尺寸的计算公式:
    输入图片大小 W×W,卷积核(Filter)大小 F×F,步长 S,边缘填充(padding)的像素数 P。
    输出图片大小为 N×N,N = (W − F + 2P )/S+1
举例:

卷积操作会改变图像大小!

如果卷积核不是中心对称的,那么卷积和滤波操作将会得到完全不一样的结果。
由于卷积操作会导致图像变小(损失图像边缘),所以为了保证卷积后图像大小与原图一致,经常的一种做法是人为的在卷积操作之前对图像边缘进行填充。
阅读更多
个人分类: CNN
上一篇论文笔记——SqueezeNet
下一篇池化(pooling)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭