BrightLampCsdn
码龄12年
关注
提问 私信
  • 博客:244,232
    244,232
    总访问量
  • 43
    原创
  • 2,269,885
    排名
  • 131
    粉丝
  • 1
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2013-02-15
博客简介:

BrightLamp的博客

查看详细资料
个人成就
  • 获得179次点赞
  • 内容获得50次评论
  • 获得693次收藏
创作历程
  • 4篇
    2019年
  • 39篇
    2018年
成就勋章
TA的专栏
  • 目录与索引
    1篇
  • 深度学习基础
    22篇
  • 深度学习编程
    19篇
  • 文章排版
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

生成对抗网络 GAN 的数学原理

1. 极大似然估计假设一个抽奖盒子里有45个球, 其编号是 1~9 共9个数字. 每个编号的球拥有的数量是:编号123456789数量246897531占比0.0440.0880.1330.1780.2000.1560.1110.0660.022...
原创
发布博客 2019.01.20 ·
5553 阅读 ·
19 点赞 ·
10 评论 ·
55 收藏

Python 实现 TensorFlow 和 PyTorch 验证卷积 convolution 函数矩阵化计算及反向传播

摘要本文使用纯 Python 实现 TensorFlow 和 PyTorch 验证卷积 convolution 函数矩阵化计算及反向传播.相关原理和详细解释, 请参考文章 :卷积 convolution 函数的矩阵化计算方法及其梯度的反向传播系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. ...
原创
发布博客 2019.01.05 ·
1090 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

卷积convolution函数的矩阵化计算方法及其梯度的反向传播

摘要本文给出卷积 convolution 函数的矩阵化计算方法, 并求解其在反向传播中的梯度相关配套代码, 请参考文章 :Python 实现 TensorFlow 和 PyTorch 验证卷积 convolution 函数矩阵化计算及反向传播Affine 变换的定义和梯度, 请参考文章 :affine/linear(仿射/线性)变换函数详解及全连接层反向传播的梯度求导系列文章索引 :...
原创
发布博客 2019.01.05 ·
1600 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

TensorFlow和PyTorch对比理解卷积和反向卷积或转置卷积(Transpose Convolution)

摘要本文主要介绍反卷积或转置卷积, 并使用 TensorFlow 和 PyTorch 验证其计算方法.相关系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. 应用场景转置卷积 (Transpose Convolution ), 有时候也称为反卷积 (Deconvolution), 是全卷积神经网...
原创
发布博客 2019.01.03 ·
2304 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

Python和PyTorch对比实现批标准化 Batch Normalization 函数在测试或推理过程中的算法

摘要本文使用Python和PyTorch对比实现批标准化 Batch Normalization 函数在测试或推理过程中的算法.相关原理及详细解释, 请参考文章 :Batch Normalization的测试或推理过程及样本参数更新方法.系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. Ba...
原创
发布博客 2018.12.30 ·
1245 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Batch Normalization的测试或推理过程及样本参数更新方法

摘要本文探讨 Batch Normalization 在测试或推断时使用的算法及其原理.相关配套代码, 请参考文章 :Python和PyTorch对比实现批标准化 Batch Normalization 函数在测试或推理过程中的算法.系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文Batch N...
原创
发布博客 2018.12.30 ·
2498 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

L2正则化Regularization详解及反向传播的梯度求导

摘要本文解释L2正则化Regularization, 求解其在反向传播中的梯度, 并使用TensorFlow和PyTorch验证.相关系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. L2 正则原理若某一个神经网络存在一个参数矩阵 Wm×nW_{m\times n}Wm×n​, 该网络在训练时...
原创
发布博客 2018.12.27 ·
7389 阅读 ·
3 点赞 ·
2 评论 ·
15 收藏

通过函数图像介绍信息熵的概念

摘要本文通过函数图像介绍信息熵的概念.相关系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文信息熵:信息的基本作用就是消除人们对事物的不确定性.信息熵是不确定程度的度量, 一个事件的不确定程度越大, 则信息熵越大.香农 (Shannon) 提出信息熵的定义如下 :entropy=−∑i=1npi...
原创
发布博客 2018.12.26 ·
2277 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

纯Python和scikit-learn对比实现PCA特征降维

摘要本文使用纯 Python 和 scikit-learn 对比实现PCA降维方法.相关原理和详细解释, 请参考: :特征工程PCA降维方法的最大方差理论详解文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. PCA 类文件目录 : vanilla_nn/pca.pyimport numpy ...
原创
发布博客 2018.12.25 ·
620 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

特征工程PCA降维方法的最大方差理论详解

摘要本文给出 PCA最大方差理论求解方法.相关配套代码, 请参考文章 :纯Python和scikit-learn对比实现PCA特征降维系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. 降维方法对于给定的一组数据点, 以矩阵 Xm×nX_{m \times n}Xm×n​ 表示 :X=(X...
原创
发布博客 2018.12.25 ·
862 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

纯Python和PyTorch对比实现SGD, Momentum, RMSprop, Adam梯度下降算法

摘要本文使用纯 Python 和 PyTorch 对比实现SGD, Momentum, RMSprop, Adam梯度下降算法.相关原理和详细解释, 请参考: :常用梯度下降算法SGD, Momentum, RMSprop, Adam详解文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. 算法类...
原创
发布博客 2018.12.22 ·
4087 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

常用梯度下降算法SGD, Momentum, RMSprop, Adam详解

摘要本文给出常用梯度下降算法的定义公式, 并介绍其使用方法.相关配套代码, 请参考文章 :纯Python和PyTorch对比实现SGD, Momentum, RMSprop, Adam梯度下降算法系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. SGD随机梯度下降 (Stochastic ...
原创
发布博客 2018.12.22 ·
3742 阅读 ·
3 点赞 ·
0 评论 ·
17 收藏

内容提要

本系列不适合首次接触深度学习读者, 但非常适合作为第二本书.建议深度学习的初学者先从其他资料开始学习基本概念, 本系列亦有一篇文章专门推荐入门的学习资料.限于篇幅, 大部分学习资料都没有详细的公式推导过程和配套的代码实现, 讲述相关的基础概念就占据了大量的空间.有注重于基础概念的, 也有注重于实战项目, 都很好.本系列的目的是, 填补基础概念到实战项目之间的空白.作者发现, 注重这一块知...
原创
发布博客 2018.12.21 ·
611 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

均方差损失函数MSELoss详解及反向传播中的梯度求导

摘要本文给出均方差损失函数 MSELoss 的定义并求解其在反向传播中的梯度.相关系列文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文均方差损失函数 MSELoss 定义简洁, 梯度求导简单, 应用广泛.1. 梯度设向量 s 作为预测值, 向量 y 为实际值, 由 MSELoss 函数计算得出误差值...
原创
发布博客 2018.12.20 ·
21396 阅读 ·
1 点赞 ·
1 评论 ·
20 收藏

纯Python和PyTorch对比实现门控循环单元GRU及反向传播

摘要本文使用纯 Python 和 PyTorch 对比实现门控循环单元GRU及其反向传播.相关配套代码, 请参考文章 :门控循环单元GRUCell详解及反向传播的梯度求导文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. GRUCell 类文件目录 : vanilla_nn/grucell.py...
原创
发布博客 2018.12.19 ·
2111 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

门控循环单元GRUCell详解及反向传播的梯度求导

摘要本文给出门控循环单元GRUCell的定义公式, 并求解其在反向传播中的梯度.给出的相关公式是完整的, 编程导向的, 可以直接用于代码实现, 已通过 Python 验证.相关配套代码, 请参考文章 :纯 Python 和 PyTorch 对比实现门控循环单元 GRU 及反向传播Affine 变换的定义和梯度, 请参考文章 :affine/linear(仿射/线性)变换函数详解及全连...
原创
发布博客 2018.12.19 ·
3069 阅读 ·
4 点赞 ·
0 评论 ·
12 收藏

纯Python和PyTorch对比实现循环神经网络LSTM及反向传播

摘要本文使用纯 Python 和 PyTorch 对比实现循环神经网络LSTM及其反向传播.相关配套代码, 请参考文章 :长短期记忆网络LSTMCell单元详解及反向传播的梯度求导文章索引 :https://blog.csdn.net/oBrightLamp/article/details/85067981正文1. LSTMCell 类文件目录 : vanilla_nn/lstm...
原创
发布博客 2018.12.18 ·
1833 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

长短期记忆网络LSTMCell单元详解及反向传播的梯度求导

摘要本文给出长短期记忆网络LSTMCell单元的定义公式, 并求解其在反向传播中的梯度.求导过程比较长, 涉及的变量很多, 但求导过程并不难, 只要细心即可.给出的相关公式是完整的, 编程导向的, 可以直接用于代码实现, 已通过 Python 验证.相关配套代码, 请参考文章 :纯 Python 和 PyTorch 对比实现循环神经网络 LSTM 及反向传播Affine 变换的定义和...
原创
发布博客 2018.12.18 ·
1657 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

深度学习算法与编程 (暂停更新)

affine/linear(仿射/线性)变换函数详解及全连接层反向传播的梯度求导https://blog.csdn.net/oBrightLamp/article/details/84333111
原创
发布博客 2018.12.18 ·
14493 阅读 ·
22 点赞 ·
2 评论 ·
188 收藏

纯Python和PyTorch对比实现循环神经网络RNNCell及反向传播

摘要本文使用纯 Python 和 PyTorch 对比实现循环神经网络RNNCell单元及其反向传播相关原理和详细解释, 请参考:循环神经网络RNNCell单元详解及反向传播的梯度求导https://blog.csdn.net/oBrightLamp/article/details/85015325正文import torchimport numpy as npnp.rando...
原创
发布博客 2018.12.15 ·
1331 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多