import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义神经网络结构
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# 设置超参数
input_size = 784 # MNIST数据集的输入大小是28x28=784
hidden_size = 784
num_classes = 10
learning_rate
pytorch神经网络入门代码
于 2024-02-16 09:51:12 首次发布

本文介绍了如何使用PyTorch库在MNIST数据集上构建和训练两种类型的神经网络:简单的全连接网络和卷积神经网络(CNN)。代码展示了从数据预处理、模型定义、训练过程到测试的完整流程。
最低0.47元/天 解锁文章
797

被折叠的 条评论
为什么被折叠?



