isNotNullX
码龄2年
关注
提问 私信
  • 博客:239,416
    239,416
    总访问量
  • 219
    原创
  • 6,085
    排名
  • 3,275
    粉丝
  • 135
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2022-10-18
博客简介:

oOBubbleX的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,712
    当月
    148
个人成就
  • 获得3,618次点赞
  • 内容获得18次评论
  • 获得3,106次收藏
创作历程
  • 164篇
    2024年
  • 55篇
    2023年
成就勋章
TA的专栏
  • 数据同步
    3篇
  • 数据仓库
    4篇
  • 数据集成
    2篇
  • 产品更新
    3篇
  • 数据仓库扫盲系列
    12篇
TA的推广
兴趣领域 设置
  • 大数据
    etl
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

解析流式处理技术在实时数据ETL的具体应用

流处理技术可以对这些数据流进行初步筛选,只将有价值的数据传递给后续的分析系统,从而减轻后续系统的负担,提高整体的处理效率。例如,在网络日志数据处理中,流处理系统可以先过滤掉一些无关的日志信息(如一些常规的系统访问日志),将可能涉及安全威胁的日志信息(如频繁的登录失败记录)及时传递给安全分析系统。例如,通过实时监测机器设备的温度、振动等数据,一旦发现异常,流处理系统可以立即发出警报,通知维修人员进行处理,从而避免生产事故的发生,提高生产效率。例如,在股票交易市场中,实时的股价数据对于投资者的决策至关重要。
原创
发布博客 13 小时前 ·
507 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

关于数据血缘你需要知道的这三个点:

例如,在一份财务报表中发现某个利润数据不符合预期,通过后向数据血缘可以追踪这个利润数据是由哪些收入和成本数据计算而来,再进一步追溯这些收入和成本数据是从哪些原始业务系统(如销售系统、采购系统)中获取的,以及在数据仓库中经过了哪些转换和处理步骤。利用数据血缘可以追溯该数据是从哪个原始数据源获取的,在数据转换和计算过程中经过了哪些环节,从而快速确定是数据源本身的错误、ETL(抽取、转换、加载)过程中的错误还是后续计算规则的错误,方便及时修复。当数据通过各种数据流、数据转换和数据资产移动时,捕获数据血缘信息。
原创
发布博客 16 小时前 ·
742 阅读 ·
20 点赞 ·
0 评论 ·
10 收藏

什么是数据仓库缓慢变化维?

定义:缓慢变化的维度是数据仓库结构中那些在不规则的基础上而不是在固定的时间间隔上变化的部分。他们记录并保存过去对数据的更改,包括对客户住所或电话联系人的更改。SCD在保持最新记录以供当前和未来使用的分析、报告和决策方面发挥着重要作用。它们有助于监控维度属性的变化,并保证在业务实体发生变化时数据质量的可维护性。1、数据变化缓慢:缓慢变化维的数据不是频繁更新的,同时它受业务操作影响的频率较低2、对数据一致性和准确性要求高跨时间数据关联:由于数据会随时间变化,需要保证在不同时间点获取的数据在逻辑上是一致的。
原创
发布博客 前天 13:43 ·
944 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

hive中数据的粒度级别有哪些?

hive中的数据粒度级别大致分三类:table、partition、bucket。
原创
发布博客 前天 11:36 ·
1044 阅读 ·
28 点赞 ·
0 评论 ·
25 收藏

一文解析离线数据仓库和实时数据仓库!

离线数仓(Offline Data Warehouse)是一种数据仓库架构,主要用于存储和处理历史的、静态的数据。它是对企业内外部各种数据源的数据进行抽取、清洗、转换、加载(ETL)后,按照预先设计好的主题域和数据模型进行组织和存储,以支持企业的决策分析、报表生成、数据挖掘等应用。这些数据,而是按照一定的周期(如日、周、月)进行批量处理。从多个数据源获取数据,这些数据源包括企业内部的业务系统(如 ERP、CRM 等)、日志文件以及外部数据等。数据收集通常是定期进行的,比如每天、每周或每月。
原创
发布博客 2024.11.11 ·
787 阅读 ·
15 点赞 ·
0 评论 ·
7 收藏

数据网格能替代数据仓库吗?

一、数据网格是什么?一、数据网格是什么?数据网格:是一种新兴的数据管理架构和理念,主要用于解决大规模、复杂数据环境下的数据管理和利用问题。:将数据看作一种产品,每个数据域都要对其生产的数据负责,保证数据的质量、可用性和可访问性。这意味着数据的生产者需要像对待产品一样,关注数据的全生命周期管理,包括数据的收集、清洗、转换、存储、维护等环节,以确保数据能够满足消费者的需求。:打破传统的数据集中管理模式,建立。
原创
发布博客 2024.11.11 ·
626 阅读 ·
10 点赞 ·
0 评论 ·
21 收藏

数据仓库还是数据集市?这俩怎么选?

数据仓库和数据集市作为支持决策分析的两种不同方式,根据各自的特点和优势,有不同的应用场景,今天就来探讨下数据集市和数据仓库该怎么选?
原创
发布博客 2024.11.08 ·
990 阅读 ·
19 点赞 ·
0 评论 ·
20 收藏

数据集市是什么?有什么优势?

因为数据仓库的工作范围和成本比较巨大,技术部门必须对所有的以全企业的眼光对待任何一次决策分析,这样就变成了成本高、耗时高的大项目,而且这种集中式的数据处理方式往往难以快速响应各部门个性化的业务需求变化,各部门在等待数据仓库分析结果的过程中可能错失业务发展的最佳时机,同时对于一些小型的分析需求而言,调用整个数据仓库资源无疑是一种浪费,这些因素共同促使了数据集市这种更灵活、更具针对性的数据架构出现。
原创
发布博客 2024.11.08 ·
1129 阅读 ·
17 点赞 ·
0 评论 ·
21 收藏

数据血缘追踪是如何在ETL过程中发挥作用?

数据血缘追踪首先就是要对数据在这些阶段中的来源(即数据最初是从哪里抽取的)、转换(在抽取后进行了哪些操作,如数据清洗、格式转换、计算等)和目标(最终数据被加载到何处,如数据仓库的哪个表)等关系进行跟踪和记录。例如,当对数据仓库中的销售数据进行分析时,如果发现某些数据看起来异常,通过数据血缘追踪可以一直追溯到电商平台的原始交易记录,查看是否在数据抽取、转换过程中出现了问题。在大数据环境下,数据血缘追踪具有重要意义,它能够帮助用户了解数据的派生关系、变换过程和使用情况,进而提高数据的可信度和可操作性。
原创
发布博客 2024.11.07 ·
1141 阅读 ·
8 点赞 ·
0 评论 ·
30 收藏

元数据管理是如何在ETL过程中发挥作用的?

数据映射规则就是规定了源数据中的各个字段如何对应到目标数据中的字段,比如源数据中的 “客户姓名” 字段可能需要经过一些处理(如大小写转换、去除特殊字符等)后映射到目标数据中的 “客户全称” 字段,元数据管理会记录下这些详细的映射规则,让开发人员能准确执行数据转换操作。:借助数据映射规则等元数据信息,开发人员可以明白源数据中的各个字段代表的实际意义以及经过转换后在目标数据中的含义,从而在处理数据时能准确把握数据的用途和应该进行的操作。是指对元数据的创建、存储、整合、控制和风发等一系列活动的管理过程。
原创
发布博客 2024.11.07 ·
1113 阅读 ·
38 点赞 ·
0 评论 ·
30 收藏

数据集成5大优化策略

例如,一家大型企业可能有多个业务部门,每个部门都有自己独立的数据库,如销售部门有销售数据库、财务部门有财务数据库、人力资源部门有人力资源数据库,数据集成就是要把这些不同部门的数据库中的相关数据抽取出来,合并到一个数据仓库或者一个综合的数据平台中,使得企业能够从整体上利用这些数据。通过充分评估现有系统、制定详细集成计划、选择适合的集成方式、保证数据一致性和完整性,以及预留足够的测试和调试时间,有效降低对现有系统的干扰,确保数据准确性和系统稳定性。- 数据清洗主要是处理数据中的错误、缺失值和重复数据。
原创
发布博客 2024.11.06 ·
576 阅读 ·
17 点赞 ·
0 评论 ·
20 收藏

数据元和元数据有什么区别?

元数据:是关于数据的数据,它不是具体的数据内容本身,而是对数据的描述信息。例如,对于一个包含销售数据的数据库表,元数据可能包括表的名称(如“销售数据表”)、表的创建日期(如“2023年1月1日”)、表中每列(数据元)的名称(如“产品编号”“销售日期”“销售数量”)、列的数据类型(如“字符型”“日期型”“整数型”)、数据的来源(如“来自销售终端系统”)等。在数据管理过程中,对数据元的操作(如定义新的数据元、修改数据元的属性等)往往会引起元数据的更新,以保持元数据对数据元描述的准确性。2)有助于数据发现。
原创
发布博客 2024.11.06 ·
524 阅读 ·
5 点赞 ·
0 评论 ·
18 收藏

数据编排与ETL有什么关系?

它不仅包括数据的提取、转换和加载,还包括数据的来源管理、目标管理、数据流程的设计和监控、数据质量的管理、数据的分发和共享等方面。例如,在一个数据驱动的项目中,数据编排需要考虑从多个不同的数据源获取数据,然后根据不同的业务需求将数据分发到不同的系统或应用中,同时还要监控数据的质量和流程的执行情况。,提高数据处理的效率和准确性。它们都是为了将原始的、分散的、不规范的数据进行处理和整合,使其成为有价值的、可用于分析的信息。,包括数据标准的制定、数据质量的管理、数据安全的保障等,确保数据的准确性、完整性和安全性。
原创
发布博客 2024.11.05 ·
1124 阅读 ·
24 点赞 ·
0 评论 ·
10 收藏

ETL架构怎么选?全量、增量还是实时流式?

ETL 系统通过比较上次处理时记录的字段值和当前的值,来确定哪些数据是新增或修改的数据,然后只抽取这些变化的数据进行处理。ETL 是将业务系统的数据经过抽取(Extract)、清洗转换(Transform)之后加载(Load)到数据仓库的过程,目的是将企业中分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。对抽取的数据进行处理,包括处理不完整数据、错误数据、重复数据;对于大规模的数据处理,批量处理可以充分利用系统的资源,一次性处理大量的数据,避免了频繁的小批量处理带来的资源开销。
原创
发布博客 2024.11.05 ·
843 阅读 ·
28 点赞 ·
0 评论 ·
10 收藏

大数据挖掘有哪些技术要点?

一、分类。通过大数据挖掘,企业和研究机构能够从海量数据中提取有价值的信息和知识,促进决策优化和业务创新。一、分类是大数据挖掘中常用的一种技术,旨在将数据分成不同的类别或组。等。是一种树形结构的分类模型,通过递归地将数据集划分成更小的子集,直到每个子集只包含一个类别。决策树的优点是易于理解和解释,但容易过拟合。是一种基于统计学习理论的分类算法,通过找到最大化间隔的超平面来区分不同类别的数据。SVM在处理高维数据和小样本数据方面表现出色。是一种基于贝叶斯定理的分类算法,假设特征之间是条件独立的。
原创
发布博客 2024.11.04 ·
1151 阅读 ·
20 点赞 ·
0 评论 ·
19 收藏

数据同步的技术支持有哪些?

数据同步技术方法大解析!
原创
发布博客 2024.11.04 ·
826 阅读 ·
15 点赞 ·
0 评论 ·
21 收藏

数据中台一键大解析!

数据分析是数据中台业务的核心功能之一,它通过对数据的挖掘和分析,帮助企业发现数据中的规律和趋势,从而支持业务决策和运营优化。自从互联玩企业掀起了数据中台风,数据中台这个点马上就火起来了,短短几年数据中台就得到了极高的热度,一大堆企业也在跟风做数据中台,都把数据中台作为企业数字化转型的救命稻草,可是如果我告诉你数据中台并不是万能钥匙,你还会搞数据中台吗?因此,企业必须建立完善的数据质量管理机制,包括数据清洗、数据校验和数据监控等,确保数据的高质量。负责将不同来源的数据接入中台,包括结构化数据和非结构化数据。
原创
发布博客 2024.11.01 ·
443 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

一文详解开源ETL工具Kettle!

一、Kettle 是什么一、Kettle 是什么Kettle 是一款开源的 ETL(Extract - Transform - Load)工具,用于数据抽取、转换和加载。它提供了一个可视化的设计环境,允许用户通过简单的拖拽和配置操作来构建复杂的数据处理工作流,能够处理各种数据源和目标之间的数据集成任务,帮助企业将来自不同数据源的数据进行整合,然后加载到数据仓库或其他目标系统中。1)技术相关基于 Java 技术。
原创
发布博客 2024.11.01 ·
1108 阅读 ·
10 点赞 ·
0 评论 ·
6 收藏

大数据挖掘和数据挖掘有什么不一样?

例如,在金融市场中,交易数据的实时分析能够帮助投资者做出及时的决策;例如,在社交网络中,通过对用户关系和互动数据的分析,可以发现用户之间的社交圈和影响力,为社交网络的优化和广告投放提供支持。随着计算机技术的飞速发展和数据存储成本的降低,各行各业积累的数据越来越多,人们开始思考如何从这些海量的数据中挖掘出有用的信息,从而推动了数据挖掘技术的发展。数据挖掘(Data Mining)是指从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
原创
发布博客 2024.10.31 ·
976 阅读 ·
16 点赞 ·
0 评论 ·
17 收藏

数据库管理系统的ACID都各自是什么?

本文基于DBMS中ACID属性的概念,这些属性保证了数据库中执行事务时保持数据一致性、完整性和可靠性所。事务是访问并可能修改数据库内容的单一逻辑工作单元。交易使用读写操作访问数据。为了保持数据库的一致性,在事务前后,遵循某些属性。这些被称为ACID特性。
原创
发布博客 2024.10.31 ·
1452 阅读 ·
31 点赞 ·
0 评论 ·
27 收藏
加载更多