树
树是一种非线性结构,模拟具有树状结构性质的数据集合,有n(n≥1)n(n\geq1)n(n≥1) 个有限节点组成一个具有层次关系的集合。把它叫做树,是因为看来像一颗倒挂的树,即根朝上,叶朝下,具有如下特点
- 每个节点有零个或多个子节点
- 没有父节点的节点称为根节点
- 每一个非根节点有且只有一个父节点
- 除了根节点,每个子节点可以分为多个不相交的子树
树的术语
- 节点的度:一个节点含有的子节点的个数称为该节点的度
- 树的度:一棵树中,最大的节点的度称为树的度
- 叶子节点或终端节点:度为零的节点
- 父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点
- 子节点:一个节点含有的子树的根节点称为该节点的子节点
- 兄弟节点: 具有相同父节点的节点互称为兄弟节点
- 节点的层次:从根开始定义起,根为第一层,根的字节为第2层,依次类推
- 树的高度和深度:树中节点的最大层次
- 节点祖先:从某节点为根的子树中任一节点都称为该节点的子孙
- 森林:由m(m≥0)m(m\geq0)m(m≥0) 棵互不相交的树的集合称为森林
树的种类
- 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树
- 有序树: 树的任意节点的子节点之间有顺序关系,这种树称为有序树
- 霍夫曼树:带权路径最短的二叉树称为霍夫曼树或最优二叉树
- B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个的子树
- 二叉树:每个节点最多含有两个字数的树称为二叉树
二叉树的种类
- 完全二叉树:对于一棵,假设其深度为d(d>1)d(d>1)d(d>1),除了第d层外,其它各层的节点数目均已达到最大值,且第d层所有节点从左向右连续的紧密排列,这样的二叉树被称为 完全二叉树,其中满二叉树的定义是所有叶子节点都在最底层的完全二叉树
- 平衡二叉树,当且仅当任何节点的两棵子树的高度差不多大于1的二叉树,需要平衡二叉树的目的是为了防止树退化为链表
- 排序二叉树(二叉查找树、二叉搜索树、有序二叉树)
- 若左子树不空,则左子树上所有节点的值均小于它的根节点的值
- 若右子树不空,则右子树上所有节点的值均大于它的根节点的值
- 左右子树也分别为二叉排序树
二叉树的存储
- 顺序存储:将二叉树存储在固定的数组中,虽然遍历速度上有一定的优势,但因所占空间比较大,是非主流二叉树存储方式,二叉树通常以链式存储
- 链式存储:由于对节点的个数无法掌握,常见树的存储表示都转换成二叉树进行处理,子节点个数最多为2
二叉树的性质
- 在二叉树的第
i
层上之多有 2i−12^{i-1}2i−1 个节点 (i>0)(i >0)(i>0) - 深度为k的二叉树之多有2k−12^k-12k−1个节点(k>0)(k>0)(k>0)
- 对于任意一棵二叉树,如果叶子节点数为N0N_0N0,而度数为2的节点总数为N2N_2N2,则N0=N2+1N_0=N_2+1N0=N2+1
- 最多有n个节点的完全二叉树的深度必为log2(n+1)\log_{2}{(n+1)}log2(n+1)
- 对完全二叉树,若从上至下,从左至右编号,则编号为
i
的节点,其左孩子编号必为2i
,其右孩子编号必为2i+1
,其父节点的编号必为i//2
(i=1时为根,除外)
二叉树代码实现
class Node(object):
"""
节点类
"""
def __init__(self, item):
self.item = item
self.lchild = None
self.rchild = None
class BinaryTree(object):
"""二叉树"""
def __init__(self, root=None):
self.root = root
def add(self,item):
"""添加节点"""
# 如果树为空,则item设置为根节点
if self.root == None:
self.root = Node(item)
return
# 2 准备队列,把根节点添加到队列
queue = []
queue.append(self.root)
while True:
# 3. 从队列中取元素
node = queue.pop(0)
# 4.1 如果左子树为空,把新节点挂在左子树上,并返回,否则将左子树加入到队列中
if node.lchild == None:
node.lchild = Node(item)
return
else:
queue.append(node.lchild)
# 4.2 如果右子树为空,把新节点挂在右子树上,并返回,否则将左子树加入到队列中
if node.rchild == None:
node.rchild = Node(item)
return
else:
queue.append(node.rchild)
def breadth_travel(self):
"""广度优先遍历"""
if self.root == None:
return
queue = []
queue.append(self.root)
while len(queue) > 0:
node = queue.pop(0)
print(node.item,end='')
if node.lchild is not None:
queue.append(node.lchild)
if node.rchild is not None:
queue.append(node.rchild)
def preorder_travel(self,root):
"""先序遍历 根 左 右"""
if root is not None:
print(root.item,end=' ')
# 递归访问左子树
self.preorder_travel(root.lchild)
# 递归访问右子树
self.preorder_travel(root.rchild)
def inorder_travle(self,root):
"""中序遍历 左 根 右"""
if root is not None:
self.inorder_travle(root.lchild)
print(root.item,end=' ')
self.preorder_travel(root.rchild)
def postorder_travle(self,root):
"""后序遍历 左 右 根"""
if root is not None:
self.inorder_travle(root.lchild)
self.preorder_travel(root.rchild)
print(root.item,end=' ')