python树结构

树是一种非线性结构,模拟具有树状结构性质的数据集合,有n(n≥1)n(n\geq1)n(n1) 个有限节点组成一个具有层次关系的集合。把它叫做树,是因为看来像一颗倒挂的树,即根朝上,叶朝下,具有如下特点

  • 每个节点有零个或多个子节点
  • 没有父节点的节点称为根节点
  • 每一个非根节点有且只有一个父节点
  • 除了根节点,每个子节点可以分为多个不相交的子树

树的术语

  • 节点的度:一个节点含有的子节点的个数称为该节点的度
  • 树的度:一棵树中,最大的节点的度称为树的度
  • 叶子节点或终端节点:度为零的节点
  • 父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点
  • 子节点:一个节点含有的子树的根节点称为该节点的子节点
  • 兄弟节点: 具有相同父节点的节点互称为兄弟节点
  • 节点的层次:从根开始定义起,根为第一层,根的字节为第2层,依次类推
  • 树的高度和深度:树中节点的最大层次
  • 节点祖先:从某节点为根的子树中任一节点都称为该节点的子孙
  • 森林:由m(m≥0)m(m\geq0)m(m0) 棵互不相交的树的集合称为森林

树的种类

  • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树
  • 有序树: 树的任意节点的子节点之间有顺序关系,这种树称为有序树
    • 霍夫曼树:带权路径最短的二叉树称为霍夫曼树或最优二叉树
    • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个的子树
  • 二叉树:每个节点最多含有两个字数的树称为二叉树

二叉树的种类

  • 完全二叉树:对于一棵,假设其深度为d(d>1)d(d>1)d(d>1),除了第d层外,其它各层的节点数目均已达到最大值,且第d层所有节点从左向右连续的紧密排列,这样的二叉树被称为 完全二叉树,其中满二叉树的定义是所有叶子节点都在最底层的完全二叉树
  • 平衡二叉树,当且仅当任何节点的两棵子树的高度差不多大于1的二叉树,需要平衡二叉树的目的是为了防止树退化为链表
  • 排序二叉树(二叉查找树、二叉搜索树、有序二叉树)
    • 若左子树不空,则左子树上所有节点的值均小于它的根节点的值
    • 若右子树不空,则右子树上所有节点的值均大于它的根节点的值
    • 左右子树也分别为二叉排序树

二叉树的存储

  • 顺序存储:将二叉树存储在固定的数组中,虽然遍历速度上有一定的优势,但因所占空间比较大,是非主流二叉树存储方式,二叉树通常以链式存储
  • 链式存储:由于对节点的个数无法掌握,常见树的存储表示都转换成二叉树进行处理,子节点个数最多为2

二叉树的性质

  1. 在二叉树的第i层上之多有 2i−12^{i-1}2i1 个节点 (i>0)(i >0)(i>0)
  2. 深度为k的二叉树之多有2k−12^k-12k1个节点(k>0)(k>0)(k>0)
  3. 对于任意一棵二叉树,如果叶子节点数为N0N_0N0,而度数为2的节点总数为N2N_2N2,则N0=N2+1N_0=N_2+1N0=N2+1
  4. 最多有n个节点的完全二叉树的深度必为log⁡2(n+1)\log_{2}{(n+1)}log2(n+1)
  5. 对完全二叉树,若从上至下,从左至右编号,则编号为i 的节点,其左孩子编号必为2i,其右孩子编号必为2i+1,其父节点的编号必为i//2 (i=1时为根,除外)

二叉树代码实现

class Node(object):
    """
    节点类
    """
    def __init__(self, item):
        self.item = item
        self.lchild = None
        self.rchild = None


class BinaryTree(object):
    """二叉树"""
    def __init__(self, root=None):
        self.root = root


    def add(self,item):
        """添加节点"""
        # 如果树为空,则item设置为根节点
        if self.root == None:
            self.root = Node(item)
            return
        # 2 准备队列,把根节点添加到队列
        queue = []
        queue.append(self.root)

        while True:
            # 3. 从队列中取元素
            node = queue.pop(0)
            # 4.1 如果左子树为空,把新节点挂在左子树上,并返回,否则将左子树加入到队列中
            if node.lchild == None:
                node.lchild = Node(item)
                return
            else:
                queue.append(node.lchild)
            
            # 4.2 如果右子树为空,把新节点挂在右子树上,并返回,否则将左子树加入到队列中
            if node.rchild == None:
                node.rchild = Node(item)
                return
            else:
                queue.append(node.rchild)
                


    def breadth_travel(self):
        """广度优先遍历"""
        if self.root == None:
            return
        
        queue = []
        queue.append(self.root)
        while len(queue) > 0:
            node = queue.pop(0)
            print(node.item,end='')
            if node.lchild is not None:
                queue.append(node.lchild)
            if node.rchild is not None:
                queue.append(node.rchild)

    def preorder_travel(self,root):
        """先序遍历 根 左 右"""
        if root is not None:
            print(root.item,end=' ')
            # 递归访问左子树
            self.preorder_travel(root.lchild)
            # 递归访问右子树
            self.preorder_travel(root.rchild)

    def inorder_travle(self,root):
        """中序遍历 左 根 右"""
        if root is not None:
            self.inorder_travle(root.lchild)
            print(root.item,end=' ')
            self.preorder_travel(root.rchild)
    
    def postorder_travle(self,root):
        """后序遍历 左 右 根"""
        if root is not None:
            self.inorder_travle(root.lchild)
            self.preorder_travel(root.rchild)
            print(root.item,end=' ')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心扬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值