Key-Value存储系统简介
Key-Value Store是当下比较流行的话题,尤其在构建诸如搜索引擎、IM、P2P、游戏服务器、SNS等大型互联网应用以及提供云计算服务的时候,怎样保证系统在海量数据环境下的高性能、高可靠性、高扩展性、高可用性、低成本成为所有系统架构们挖苦心思考虑的重点,而怎样解决数据库服务器的性能瓶颈是最大的挑战。
按照分布式领域的CAP理论(Consistency、 Availability、Tolerance to network Partitions这三部分在任何系统架构实现时只可能同时满足其中二点,没法三者兼顾)来衡量,传统的关系数据库的ACID只满足了Consistency、Availability,因此在Partition tolerance上就很难做得好。另外传统的关系数据库处理海量数据、分布式架构时候在Performance、Scalability、 Availability等方面也存在很大的局限性。
而Key-Value Store更加注重对海量数据存取的性能、分布式、扩展性支持上,并不需要传统关系数据库的一些特征,例如:Schema、事务、完整SQL查询支持等等,因此在分布式环境下的性能相对于传统的关系数据库有较大的提升。
Key-Value数据库分为很多种类,具体如下图:
这些Key-Value数据库,有的是用C/C++编写的,有的是用Java编写的,还有的是用Erlang编写的,每个都有自己的独到之处,我们从中挑选一些比较有特色且应用广泛的产品学习和了解一下。
1、Voldemort
Voldemort是一个分布式Key/Value存储系统,它具有以下特点:
●数据自动在多个服务器之间复制;
●数据自动分区,因此每个服务器只包括整体数据的一个子集;
●服务器故障处理是透明的;
●支持插入式序列化,允许丰富的Key和Value类型,包括列表和元组,也可以集成常见的序列化框架,如Protocol Buffers,Thrift,Avro和Java Serialization;
●数据项支持版本化,即使在故障情况下,数据完整性也可以得到保障;
●每个节点都是独立的,无需其他节点协调,因此也没有中央节点;
●单节点性能优秀:根据机器配置、网络、磁盘系统和数据复制因素的不同,每秒可以执行10-20k操作;
●支持地理分散式部署。
2、Dynamo
Dynamo是亚马逊的key-value模式的存储平台,可用性和扩展性都很好,性能也不错:读写访问中99.9%的响应时间都在300ms内。
接下来对 Dynamo 需要的一些特性做一下简要的描述:
●Cost-effectiveness - 省钱!Dynamo 不像一些商用数据库产品,需要昂贵的服务器来得到良好的性能,而且可能增加5%的访问量会需要你花2万美刀去买一台新服务器。而在 Dynamo上,由于是利用一堆廉价机器来存数据,于是你可能只需要花个500刀买个破机器加入到集群里就行了。
●Dynamo 是一个Key-Value 存储 - 因此他不支持外键和关联查询什么的。其Value值是二进制存储的,所以查询条件也只能作用在Key 上。
●配置简单的分布式存储 - 这是由于Dynamo是去中心化地设计,在集群中它的每一台机器都是对等的,不像 MongoDB 这样的中心化设计,于是它也不会有单点问题。
3、memcachedb
memcachedb是一个由新浪网的开发人员开放出来的开源项目,给memcached分布式缓存服务器添加了Berkeley DB的持久化存储机制和异步主辅复制机制,让memcached具备了事务恢复能力、持久化能力和分布式复制能力,非常适合于需要超高性能读写速度,但是不需要严格事务约束,能够被持久化保存的应用场景,例如memcachedb被应用在新浪博客上面。
4、CassandraApache Cassandra是一套开源分布式Key-Value存储系统。它最初由Facebook开发,用于储存特别大的数据。Facebook目前在使用此系统。
主要特性:
●分布式
●基于column的结构化
●高伸展性
Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。
Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。)Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。
和其他数据库比较,有几个突出特点:
●模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。
●真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。
●多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。
●范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。
●列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。
●分布式写操作 :有可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。
5、memcached
memcached是一套分布式的快取系统,当初是Danga Interactive为了LiveJournal所发展的,但目前被许多软件(如MediaWiki)所使用。这是一套开放源代码软件,以BSD license授权释出。
memcached缺乏认证以及安全管制,这代表应该将memcached服务器放置在防火墙后。
memcached的API使用三十二位元的循环冗余校验(CRC-32)计算键值后,将资料分散在不同的机器上。当表格满了以后,接下来新增的资料会以LRU机制替换掉。由于memcached通常只是当作快取系统使用,所以使用memcached的应用程式在写回较慢的系统时(像是后端的数据库)需要额外的程式码更新memcached内的资料。
memcached具有多种语言的客户端开发包,包括:Perl/PHP/JAVA/C/Python/Ruby/C#/MySQL/
6、Hypertable
Hypertable是一个开源、高性能、可伸缩的数据库,它采用与Google的Bigtable相似的模型。在过去数年中,Google为在PC集群 上运行的可伸缩计算基础设施设计建造了三个关键部分。第一个关键的基础设施是Google File System(GFS),这是一个高可用的文件系统,提供了一个全局的命名空间。它通过跨机器(和跨机架)的文件数据复制来达到高可用性,并因此免受传统 文件存储系统无法避免的许多失败的影响,比如电源、内存和网络端口等失败。第二个基础设施是名为Map-Reduce的计算框架,它与GFS紧密协作,帮 助处理收集到的海量数据。第三个基础设施是Bigtable,它是传统数据库的替代。Bigtable让你可以通过一些主键来组织海量数据,并实现高效的 查询。Hypertable是Bigtable的一个开源实现,并且根据我们的想法进行了一些改进。